Answer: A pressure of 0.681 atm would be exerted by 0.023 grams of oxygen
if it occupies 31.6 mL at
.
Explanation:
Given : Mass of oxygen = 0.023 g
Volume = 31.6 mL
Convert mL into L as follows.

Temperature = 
As molar mass of
is 32 g/mol. Hence, the number of moles of
are calculated as follows.

Using the ideal gas equation calculate the pressure exerted by given gas as follows.
PV = nRT
where,
P = pressure
V = volume
n = number of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the value into above formula as follows.

Thus, we can conclude that a pressure of 0.681 atm would be exerted by 0.023 grams of oxygen
if it occupies 31.6 mL at
.
Answer:
If there is 0.66 moles of iron(III)oxide produced, there reacte 0.99 moles of oxygen (O2)
Explanation:
Step 1: Data given
Number of moles iron (III) oxide (Fe2O3) = 0.66 moles
Step 2: The balanced equation
4Fe + 3O2 → 2Fe2O3
Step 3: Calculate moles of oxygen (O2)
For 4 moles Fe consumed, we need 3 moles of O2 to produce 2 moles of Fe2O3
For 0.66 moles Fe2O3 produced, we need 3/2 * 0.66 = 0.99 moles of O2
If there is 0.66 moles of iron(III)oxide produced, there reacte 0.99 moles of oxygen (O2)
Answer:
The emission of gamma rays does not alter the number of protons or neutrons in the nucleus but instead has the effect of moving the nucleus from a higher to a lower energy state (unstable to stable). Gamma ray emission frequently follows beta decay, alpha decay, and other nuclear
Explanation:
because im smart
I'm assuming that you meant 55 g/cm^
3. Density=

. This is the definition of density. If you rearrange this equation by multiplying each side of the equation by the volume, you get: (Density)(Volume)=Mass. Divide each side by the density to get: Volume=Mass/Density. Now just plug everything in:
V=220 (grams)/55 (grams/cm^3)=<u>4 cm^3</u>