If the kinetic energy of each ball is equal to that of the other,
then
(1/2) (mass of ppb) (speed of ppb)² = (1/2) (mass of gb) (speed of gb)²
Multiply each side by 2:
(mass of ppb) (speed of ppb)² = (mass of gb) (speed of gb)²
Divide each side by (mass of gb) and by (speed of ppb)² :
(mass of ppb)/(mass of gb) = (speed of gb)²/(speed of ppb)²
Take square root of each side:
√ (ratio of their masses) = ( 1 / ratio of their speeds)²
By trying to do this perfectly rigorously and elegantly, I'm also
using up a lot of space and guaranteeing that nobody will be
able to follow what I have written. Let's just come in from the
cold, and say it the clear, easy way:
If their kinetic energies are equal, then the product of each
mass and its speed² must be the same number.
If one ball has less mass than the other one, then the speed²
of the lighter one must be greater than the speed² of the heavier
one, in order to keep the products equal.
The pingpong ball is moving faster than the golf ball.
The directions of their motions are irrelevant.
Answer:
it is safe to stand at the end of the table
Explanation:
For this exercise we use the rotational equilibrium condition
Στ = 0
W x₁ - w x₂ - w_table x₃ = 0
M x₁ - m x₂ - m_table x₃ = 0
where the mass of the large rock is M = 380 kg and its distance to the pivot point x₁ = 850 cm = 0.85m
the mass of the man is 62 kg and the distance
x₂ = 4.5 - 0.85
x₂ = 3.65 m
the mass of the table (m_table = 22 kg) is at its geometric center
x_{cm} = L/2 = 2.25 m
x₃ = 2.25 -0.85
x₃ = 1.4 m
let's look for the maximum mass of man
m_{maximum} =
let's calculate
m_{maximum} =
(380 0.85 - 22 1.4) / 3.65
m_{maximum} = 80 kg
we can see that the maximum mass that the board supports without turning is greater than the mass of man
m_{maximum}> m
consequently it is safe to stand at the end of the table
Answer:
1) x rays
Explanation:
Honestly Gamma rays has the Highest frequency, but in your options, gamma rays is not among, so x rays has the highest frequency among your options.
by Manshow
Answer:
W= 20000j
Explanation:
W= fd = 1000N(20m) = 20000j