Speed = (distance traveled) / (time to travel the distance).
Strange as it may seem, 'velocity' is completely different.
Velocity doesn't involve the total distance traveled at all.
Instead, 'velocity' is based on 'displacement' ... the distance
between the start-point and end-point, regardless of the route
taken to get there. So the displacement in driving once around
any closed path is zero, because you end up where you started.
Velocity =
(displacement during some time)
divided by
(time for the displacement)
AND the direction from the start-point to the end-point.
For the guy who drove 15 km to his destination in 10 min, and then
back to his starting point in 5 min, (assuming he returned by way of
the same 15-km route):
Speed = (15km + 15km) / (10min + 5min) = (30/15) (km/min)
= 2 km/min.
Velocity = (end location - start position) / (15 min) = Zero .
The answer is:
Both the distance traveled in a given time and the magnitude of the acceleration at a given instant
Hope I Helped!
I would go with Segment D.
I=120 V/20 ohms
=6.0 A
SO the answer would be <span>A. 6.00 A</span>
Answer:
It's only 1.11 m/s2 weaker at 400 km above surface of Earth
Explanation:
Let Earth radius be 6371 km, or 6371000 m. At 400km above the Earth surface would be 6371 + 400 = 6771 km, or 6771000 m
We can use Newton's gravitational law to calculate difference in gravitational acceleration between point A (Earth surface) and point B (400km above Earth surface):

where G is the gravitational constant, M is the mass of Earth and r is the distance form the center of Earth to the object





So the gravitational acceleration at 400km above surface is only 0.885 the gravitational energy at the surface, or 0.885*9.81 = 8.7 m/s2, a difference of (9.81 - 8.7) = 1.11 m/s2.