Answer:
a) For P: ![v=0.938\frac{m}{s}](https://tex.z-dn.net/?f=%20v%3D0.938%5Cfrac%7Bm%7D%7Bs%7D)
For Q: ![v = 1.876\frac{m}{s}](https://tex.z-dn.net/?f=%20v%20%3D%201.876%5Cfrac%7Bm%7D%7Bs%7D)
b) For P:
![a_{rad}=8.80\frac{m}{s^{2}}](https://tex.z-dn.net/?f=%20a_%7Brad%7D%3D8.80%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D)
for Q:
![a_{rad}=17.60\frac{m}{s^{2}}](https://tex.z-dn.net/?f=%20a_%7Brad%7D%3D17.60%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D)
c) As the distance from the axis increases then speed increases too.
Explanation:
a) Assuming constant angular acceleration we can find the angular speed of the wheel dividing the angular displacement θ between time of rotation:
![\omega =\frac{\theta}{t}](https://tex.z-dn.net/?f=%20%5Comega%20%3D%5Cfrac%7B%5Ctheta%7D%7Bt%7D%20)
One rotation is 360 degrees or 2π radians, so θ=2π
![\omega =\frac{2\pi}{0.670} =9.38\frac{rad}{s}](https://tex.z-dn.net/?f=%20%5Comega%20%3D%5Cfrac%7B2%5Cpi%7D%7B0.670%7D%20%3D9.38%5Cfrac%7Brad%7D%7Bs%7D%20)
Angular acceleration is at every point on the wheel, but speed (tangential speed) is different and depends on the position (R) respect the rotation axis, the equation that relates angular speed and speed is:
![v = \omega R](https://tex.z-dn.net/?f=%20v%20%3D%20%5Comega%20R%20)
for P:
![v = 9.38\frac{rad}{s}*0.1m=0.938\frac{m}{s}](https://tex.z-dn.net/?f=%20v%20%3D%209.38%5Cfrac%7Brad%7D%7Bs%7D%2A0.1m%3D0.938%5Cfrac%7Bm%7D%7Bs%7D)
for Q:
![v = 9.38\frac{rad}{s}*0.2m=1.876\frac{m}{s}](https://tex.z-dn.net/?f=%20v%20%3D%209.38%5Cfrac%7Brad%7D%7Bs%7D%2A0.2m%3D1.876%5Cfrac%7Bm%7D%7Bs%7D)
b) Centripetal acceleration is:
![a_{rad}= \frac{v^2}{R}](https://tex.z-dn.net/?f=%20a_%7Brad%7D%3D%20%5Cfrac%7Bv%5E2%7D%7BR%7D)
for P:
![a_{rad}= \frac{(0.938)^2}{0.1}=8.80\frac{m}{s^{2}}](https://tex.z-dn.net/?f=%20a_%7Brad%7D%3D%20%5Cfrac%7B%280.938%29%5E2%7D%7B0.1%7D%3D8.80%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D)
for Q:
![a_{rad}= \frac{(1.876)^2}{0.2}=17.60\frac{m}{s^{2}}](https://tex.z-dn.net/?f=%20a_%7Brad%7D%3D%20%5Cfrac%7B%281.876%29%5E2%7D%7B0.2%7D%3D17.60%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D)
c) As seen on a) speed and distance from axis is
because ω is constant the if R increases then v increases too.
Answer:
B.7.5m/s2
Explanation:
average acceleration=change invelocity/time taken
a=(60-30)/4
=7.5m/s2
Answer:
400ft. 32ft/s -32ft/s
Explanation:
In reality the gravitational acceleration is 9.81 so the quadratic coefficient of the function should be 9.81/2
Anyway for the sake of assumtion let us takes=160t-16t^2
ds/dt=160-32t=0
t=160/32= 5 seconds.
s=160*160/32-16*(160/32)^2= 400 mts
s=384 mts
160t-16t^2=384
i.e
16t^2-160t+384=0
t^2-10t+24=0
(t-6)(t-4)=0
t=[4,6]
we have to take t=4 because it is all the up i.e <5
velocity =v=ds/dt=160-32t
v=160-32*4=32 ft/sec still going up
for all the way down take t=6 whuch is >5
v=160-6*32=-32 ft/sec (falling down!!!)
Answer:
The angular acceleration is ![\alpha = 3.235 \ rad/s ^2](https://tex.z-dn.net/?f=%5Calpha%20%20%3D%203.235%20%5C%20rad%2Fs%20%5E2)
Explanation:
From the question we are told that
The moment of inertia is ![I = 0.034\ kg \cdot m^2](https://tex.z-dn.net/?f=I%20%20%3D%20%200.034%5C%20kg%20%5Ccdot%20m%5E2)
The net torque is ![\tau = 0.11\ N \cdot m](https://tex.z-dn.net/?f=%5Ctau%20%20%3D%20%200.11%5C%20N%20%5Ccdot%20m)
Generally the net torque is mathematically represented as
![\tau = I * \alpha](https://tex.z-dn.net/?f=%5Ctau%20%3D%20%20I%20%20%2A%20%20%5Calpha)
Where
is the angular acceleration so
![\alpha = \frac{\tau }{I}](https://tex.z-dn.net/?f=%5Calpha%20%20%3D%20%20%5Cfrac%7B%5Ctau%20%7D%7BI%7D)
substituting values
![\alpha = \frac{0.1 1}{ 0.034}](https://tex.z-dn.net/?f=%5Calpha%20%20%3D%20%20%5Cfrac%7B0.1%201%7D%7B%200.034%7D)
![\alpha = 3.235 \ rad/s ^2](https://tex.z-dn.net/?f=%5Calpha%20%20%3D%203.235%20%5C%20rad%2Fs%20%5E2)
Answer:
10 m/s
Explanation:
Momentum before collision = momentum after collision
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
(8 kg)(8 m/s) + (6 kg)(6 m/s) = (8 kg)(5 m/s) + (6 kg) v
64 kg m/s + 36 kg m/s = 40 kg m/s + (6 kg) v
60 kg m/s = (6 kg) v
v = 10 m/s