1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yulyashka [42]
2 years ago
14

How to solve p-10/-2=0

Mathematics
2 answers:
nevsk [136]2 years ago
4 0

Answer: p=−5

Step-by-step explanation:

gizmo_the_mogwai [7]2 years ago
4 0

Answer:

p-10/-2=0

p-5=0

p=5

solved

You might be interested in
3(12-8)/2*5-4 simplify or evaluate the following expressions
vekshin1

Answer:

26

Step-by-step explanation:

12-8=4

3(4)=12

12/2=6

6*5=30

30-4

26

4 0
3 years ago
Match each function with the corresponding function formula when h(x)=5-3x and g(x)=-3+5
Grace [21]

Answer:

k(x) = (3g + 5h)(x) ⇒ (1)

k(x) = (5h - 3g)(x) ⇒ (3)

k(x) = (h - g)(x) ⇒ (2)

k(x) = (g + h)(x) ⇒ (4)

k(x) = (5g + 3h)(x) ⇒ (5)

k(x) = (3h - 5g)(x) ⇒ (6)

Step-by-step explanation:

* To solve this problem we will substitute h(x) and g(x) in k(x) in the

  right column to find the corresponding function formula in the

  left column

∵ h(x) = 5 - 3x

∵ g(x) = -3^x + 5

- Lets start with the right column

# k(x) = (3g + 5h)(x)

∵ g(x) = -3^x + 5

∵ 3g(x) = 3[-3^x + 5] = [3 × -3^x + 3 × 5]

- Lets simplify 3 × -3^x

 take the negative out -(3 × 3^x), and use the rule a^n × a^m = a^(n+m)

∴ -3(3 × 3^x) = -(3^x+1)

∴ 3g(x) = -3^x+1 + 15

∵ h(x) = 5 - 3x

∵ 5h(x) = 5[5 - 3x] = [5 × 5 - 5 × 3x] = 25 - 15x

- Now substitute 3g(x) and 5h(x) in k(x)

∵ k(x) = (3g + 5h)(x)

∴ k(x) = -3^x+1 + 15 + 25 - 15x ⇒ simplify

∴ k(x) = 40 - 3^x+1 - 15x

∴ k(x) = 40 - 3^x+1 - 15x ⇒ k(x) = (3g + 5h)(x)

* k(x) = (3g + 5h)(x) ⇒ (1)

# k(x) = (5h - 3g)(x)

∵ 5h(x) = 25 - 15x

∵ 3g(x) = -3^x+1 + 15

∵ k(x) = (5h - 3g)(x)

∴ k(x) = 25 - 15x - (-3^x+1 + 15) = 25 -15x + 3^x+1 - 15 ⇒ simplify

∴ k(x) = 10 + 3^x+1 - 15x

∴ k(x) = 10 + 3^x+1 - 15x ⇒ k(x) = (5h - 3g)(x)

* k(x) = (5h - 3g)(x) ⇒ (3)

# k(x) = (h - g)(x)

∵ h(x) = 5 - 3x

∵ g(x) = -3^x + 5

∵ k(x) = (h - g)(x)

∴ k(x) = 5 - 3x - (-3^x + 5) = 5 - 3x + 3^x - 5 ⇒ simplify

∴ k(x) = 3^x - 3x

∴ k(x)= 3^x - 3x ⇒ k(x) = (h - g)(x)

* k(x) = (h - g)(x) ⇒ (2)

# k(x) = (g + h)(x)

∵ h(x) = 5 - 3x

∵ g(x) = -3^x + 5

∵ k(x) = (g + h)(x)

∴ k(x) = -3^x + 5 + 5 - 3x ⇒ simplify

∴ k(x) = 10 - 3^x - 3x

∴ k(x)= 10 - 3^x - 3x ⇒ k(x) = (g + h)(x)

* k(x) = (g + h)(x) ⇒ (4)

# k(x) = (5g + 3h)(x)

∵ g(x) = -3^x + 5

∵ 5g(x) = 5[-3^x + 5] = [5 × -3^x + 5 × 5] = 5(-3^x) + 25

∴ 5g(x) = -5(3^x) + 25

∵ h(x) = 5 - 3x

∵ 3h(x) = 3[5 - 3x] = [3 × 5 - 3 × 3x] = 15 - 9x

- Now substitute 5g(x) and 3h(x) in k(x)

∵ k(x) = (5g + 3h)(x)

∴ k(x) = -5(3^x) + 25 + 15 - 9x ⇒ simplify

∴ k(x) = 40 - 5(3^x) - 9x

∴ k(x) = 40 - 5(3^x) - 9x ⇒ k(x) = (5g + 3h)(x)

* k(x) = (5g + 3h)(x) ⇒ (5)

# k(x) = (3h - 5g)(x)

∵ 3h(x) = 15 - 9x

∵ 5g(x) = -5(3^x) + 25

∵ k(x) = (3h - 5g)(x)

∴ k(x) = 15 - 9x - [-5(3^x) + 25] = 15 - 9x + 5(3^x) - 25 ⇒ simplify

∴ k(x) = 5(3^x) - 9x - 10

∴ k(x) = 5(3^x) - 9x - 10 ⇒ k(x) = (3h - 5g)(x)

* k(x) = (3h - 5g)(x) ⇒ (6)

4 0
3 years ago
A train is traveling at a speed of 60 miles per hour. What happens to the number of miles when the number of hours
belka [17]

Answer:

It multiplies

Step-by-step explanation:

if the number of hours changes to example to 2 then you multiply 60 by 2 resulting in 120miles in 2 hours

5 0
3 years ago
Does a point and a linehave any dimensions to measure
poizon [28]

Hello!

A line is one dimensional. This means it has one dimension, it's length. Therefore, you could measure the length of a line.

I hope this helps!

6 0
3 years ago
Read 2 more answers
What is the square root of -2i?
Studentka2010 [4]

Answer:

1-i and -1+i

Step-by-step explanation:

We are to find the square roots of z=0-2i. First, convert from Cartesian to polar form:

r=\sqrt{a^2+b^2}\\r=\sqrt{0^2+(-2)^2}\\r=\sqrt{0+4}\\r=\sqrt{4}\\r=2

\theta=tan^{-1}(\frac{b}{a})\\ \theta=tan^{-1}(\frac{-2}{0})\\\theta=\frac{3\pi}{2}

z=2(\cos\frac{3\pi}{2}+i\sin\frac{3\pi}{2})

Next, use the formula \displaystyle \sqrt[n]{r}\biggr[\cis\biggr(\frac{\theta+2\pi k}{n}\biggr)\biggr] where \displaystyle k=0,1,2,...\:,n-1 to find the square roots:

<u>When k=1</u>

<u />\displaystyle \sqrt[2]{2}\biggr[cis\biggr(\frac{\frac{3\pi}{2}+2\pi(1)}{2}\biggr)\biggr]

\displaystyle \sqrt{2}\biggr[cis\biggr(\frac{3\pi}{4}+\pi\biggr)\biggr]

\sqrt{2}\biggr(cis\frac{7\pi}{4}\biggr)

\sqrt{2}(\cos\frac{7\pi}{4}+i\sin\frac{7\pi}{4})\\ \\\sqrt{2}(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i)\\ \\1-i

<u>When k=0</u>

<u />\displaystyle \sqrt[2]{2}\biggr[cis\biggr(\frac{\frac{3\pi}{2}+2\pi(0)}{2}\biggr)\biggr]

\sqrt{2}\biggr(cis\frac{3\pi}{4}\biggr)

\sqrt{2}(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4})\\ \\\sqrt{2}(-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i)\\ \\-1+i

Thus, the square roots of -2i are 1-i and -1+i

4 0
2 years ago
Other questions:
  • A store sells four-packs of permanent markers in assorted colors for $3.19 per pack. All spiral-bound notebooks, whether wide-ru
    8·2 answers
  • Which products result in a sum or difference of cubes? Check all that apply. (x – 4)(x2 + 4x – 16) (x – 1)(x2 – x + 1) (x – 1)(x
    6·2 answers
  • What property is 77(-2)=(-2)77
    12·1 answer
  • Simplify the expression.
    14·1 answer
  • Which of the following numbers would appear between 0.1 and 1.0 on the number line?
    12·1 answer
  • NEED HELP ASAP
    14·2 answers
  • Identify what is shown in each circle below, in order from left to right.
    14·2 answers
  • In a scale drawing of a house, 2 inches : 5 feet. The actual kitchen of the house will be 17 feet long. How long will the drawin
    10·1 answer
  • (iv) The area of a rectangle with breadth<br>5 cm is 30 sq. cm. Find its length and<br>perimeter.​
    8·1 answer
  • What are some examples from science and engineering where a quadratic is used but is not a function?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!