It has to do with the releasing of ethylene, which speeds up the ripening process
They are pumped across the mitochondrial inner membrane against their concentration gradient (to where their concentration is high); as the H+ ions flow back to where their concentration is low, they drive ATP synthase to form ATP
Answer:
60 grams of ice will require 30.26 calories to raise the temperature 1°C.
Explanation:
The amount of heat (Q) to raise the temperature of 60.0 g of ice by 1°C can be calculated from:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat released or absorbed by the system.
m is the mass of the ice (m = 60.0 g).
c is the specific heat capacity of ice (c = 2.108 J/g.°C).
ΔT is the temperature difference (ΔT = 1.0 °C).
∴ Q = m.c.ΔT = (60.0 g)(2.108 J/g.°C)(1.0 °C) = 126.48 J.
<em>It is known that 1.0 cal = 4.18 J.</em>
<em>∴ Q = (126.48 J)(1.0 cal / 4.18 J) = 30.26 cal.</em>
Active transport is the moving of molecules across the membrane of the cell against the concentration gradient with the use of ATP.
Low to high concentration. Concentration gradient is the diffusion (movement of molecules from regions of low concentration) from high to low with the gradient. Active transport is from low to high, against the gradient.