We can use the formula of motion in physics (2nd law od newton) in this problem:
x direction: Fsin ∅ = ma
y direction: Fcos ∅ -mg = 0
∅ is equal to sin ∅ / cos ∅ or x/y
tan ∅ = ma / mg = a /g
Applying acceleration formula:
v = vo + at ; 28 = 0 + 6a ; a = 4.67 m/s^2
∅ = tan-1 (a/g) = tan-1 (4.67/9.81) = <span>25.4 degrees.</span>
A
longitudinal wave is a mechanical wave that causes the medium to vibrate
parallel to the direction of the wave. Its wave’s forces travel through
multiple rarefactions and compressions where compression is the closest
distance in the longitudinal wave and rarefaction is the farthest distance
apart in the said wave.
The resistance of the sample is 
Explanation:
The relationship between resistance of a material and temperature is given by the equation

where
is the resistance at the temperature 
is the temperature coefficient of resistance
For the sample of nickel in this problem, we have:
when the temperature is 
While the temperature coefficient of resistance of nickel is

Therefore, the resistance of the sample when its temperature is

is

Learn more about resistance:
brainly.com/question/4438943
brainly.com/question/10597501
brainly.com/question/12246020
#LearnwithBrainly
Answer:
The distance between the camera and the rock is 836.6 cm
Explanation:
A right triangle is formed where the hypotenuse (h) is the distance between the rock and the camera. One of the leg (l) is the distance between the camera and the surface. The angle between the hypotenuse and this leg is α = 90° - 13.69° = 76.31°. By definition:
cos α = adjacent/hypotenuse
cos(76.31) = 198.0/h
h = 198.0/cos(76.31)
h = 836.6 cm