Answer:
2.5 m/s²
Explanation:
Using the formula, v = u + at ( v = Final velocity; u = Initial velocity; t = Time; a = Acceleration)
25 = 0 + 10a
a = 25/10 = 2.5 m/s²
Answer:
U = (ε0AV^2) / 2d
Explanation:
Where C= capacitance of the capacitor
ε0= permittivity of free space
A= cross sectional area of plates
d= distance between the plates
V= potential difference
First, the capacitance of a capacitor is obtained by:
C = ε0A/d.
Starting at the formula , U= (CV^2)/2. Formula for energy stored in a capacitor
Substitute in for C:
U = (ε0A/d) * V^2 / 2
Hence:
U = (ε0AV^2) / 2d
It stays constant, because it's using that energy to change state
As close as I can read it, it appears to be
1/12 gram/second
(0.08333... gm/sec)
<h2>Answer:</h2>
<u>Ball A has more kinetic energy</u>
<h2>Explanation:</h2>
As we know that Kinetic energy is given by
K. E = 1/2 mv²
Since K E is dependent upon both mass and velocity so increasing mass will produce more kinetic energy if the speed remains constant
As the mass of ball A is greater than ball B so we can say that the kinetic energy of ball is more than ball B