Answer:
τ = 132.773 lb/in² = 132.773 psi
Explanation:
b = 12 in
F = 60 lb
D = 3.90 in (outer diameter) ⇒ R = D/2 = 3.90 in/2 = 1.95 in
d = 3.65 in (inner diameter) ⇒ r = d/2 = 3.65 in/2 = 1.825 in
We can see the pic shown in order to understand the question.
Then we get
Mt = b*F*Sin 30°
⇒ Mt = 12 in*60 lb*(0.5) = 360 lb-in
Now we find ωt as follows
ωt = π*(R⁴ - r⁴)/(2R)
⇒ ωt = π*((1.95 in)⁴ - (1.825 in)⁴)/(2*1.95 in)
⇒ ωt = 2.7114 in³
then the principal stresses in the pipe at point A is
τ = Mt/ωt ⇒ τ = (360 lb-in)/(2.7114 in³)
⇒ τ = 132.773 lb/in² = 132.773 psi
A pure substance that is made up of only one kind of atom is called an element
Answer:
Capacitance of the second capacitor = 2C
Explanation:

Where A is the area, d is the gap between plates and ε₀ is the dielectric constant.
Let C₁ be the capacitance of first capacitor with area A₁ and gap between plates d₁.
We have

Similarly for capacitor 2

Capacitance of the second capacitor = 2C
<span>Technician a says that to prevent injuries in an auto accident, all steering columns have a break-off steering wheel. technician b says that to prevent injuries in an accident, all steering columns are now fitted with a flexible rubber tube. Both technicians are correct. The </span>vehicle manufacturers use break away steering column mounting brackets to protect the driver in an accident. The <span>vehicle manufacturers are required to use collapsible shafts in the steering column. </span>
Ideally, if all the magnetic of one winding cuts the other winding, and there isn't any loss in the transformer core or the resistance of the wire, then the voltage across each winding is proportional to the number of turns in its coil.
If you apply 100 V to a winding of 50 turns, then a winding that yields 20 volts
must be wound with
(20/100) of 50 turns = 10 turns