Answer:
No question so I'm just taking the points
Answer:
Explanation:
From the statement of the problem,
B₂S₃
+ H₂O
→ H₃BO₃
+ H₂S
B₂S₃ + H₂O → H₃BO₃ + H₂S
We that the above expression does not conform with the law of conservation of mass:
To obey the law, we need to derive a balanced reaction equation:
Let us use the mathematical method to obtain a balanced equation.
let the balanced equation be:
aB₂S₃ + bH₂O → cH₃BO₃ + dH₂S
where a, b, c and d will make the equation balanced.
Conservating B: 2a = c
S: 3a = d
H: 2b = 3c + 2d
O: b = 3c
if a = 1,
c = 2,
b = 6,
2d = 2(6) - 3(2) = 6, d = 3
Now we can input this into our equation:
B₂S₃ + 6H₂O → 2H₃BO₃ + 3H₂S
B₂S₃
+ 6H₂O
→ 2H₃BO₃
+ 3H₂S
Answer:
1. 31.25 mL
2. 1.98 g/L
3. 0.45 g/mL
Explanation:
For each of the problems, you need to perform unit conversions. You need to use the information given to you to convert to a specific unit.
1. You need volume (mL). You have density (g/mL) and mass (g). Divide mass by density. You will cancel out mL and be left with g.
(50.0 g)/(1.60 g/mL) = 31.25 mL
2. You are given grams and liters. You need to find density with units g/L. This means that you have to divide grams by liters.
(0.891 g)/(0.450 L) = 1.98 g/L
3. You have to find density again but this time with units g/mL. Divide the given mass by the volume.
(10.0 g)/(22.0 mL) = 0.45 g/mL
In this item, I supposed, that we are determine the molar fraction of oxygen and carbon dioxide in the sample. This can be done by dividing their respective partial pressures by the total pressure of the sample.
O2 : mole fraction = (100.7 mmHg) / (763.00 mmHg) = 0.13
CO2 : mole fraction = (33.57 mmHg) / (763.00 mmHg) = 0.044
Answers: O2 = 0.13
CO2 = 0.044