Answer:
The [OH⁻] of a solution that has a pOH of 2.7 will be 2*10⁻³
Explanation:
The pOH (or potential OH) is a measure of the basicity or alkalinity of a solution.
pOH indicates the concentration of hydroxyl ions [OH-] present in a solution. In this way, pOH is defined as the negative logarithm of the activity of hydroxide ions, that is, the concentration of OH- ions:
pOH= -log [OH⁻]
In this case, pOH has a value of 2.7. Replacing:
2.7= -log [OH⁻]
and solving:
[OH⁻]=10⁻² ⁷
you get:
[OH⁻]≅ 2*10⁻³
<u><em>The [OH⁻] of a solution that has a pOH of 2.7 will be 2*10⁻³</em></u>
The answer is (3), oxidation occurs at the anode and reduction occurs at the cathode. That's because the oxidation reaction can lose electrons and reduction can gain electrons.
I'm assuming that it is due to the breeze coming from the tides.
That it is number 17 35.45 it's period is 3.
Hope that helped ^^