Like a seesaw, it shows that the forces aren’t equal because if it was the seesaw would stay put
Answer:
His final velocity is 15.8 m/s.
Step-by-step explanation:
Given:
Initial velocity of the driver is,
m/s
Acceleration of the driver is,
m/s²
Time taken to reach final velocity is,
s.
The final velocity is given using the Newton's equations of motion as:
, where,
is the final velocity.
Now, plug in the given values and solve for
.

Therefore, his final velocity is 15.8 m/s.
Answer:
The final charges of each sphere are: q_A = 3/8 Q
, q_B = 3/8 Q
, q_C = 3/4 Q
Explanation:
This problem asks for the final charge of each sphere, for this we must use that the charge is distributed evenly over a metal surface.
Let's start Sphere A makes contact with sphere B, whereby each one ends with half of the initial charge, at this point
q_A = Q / 2
q_B = Q / 2
Now sphere A touches sphere C, ending with half the charge
q_A = ½ (Q / 2) = ¼ Q
q_B = ¼ Q
Now the sphere A that has Q / 4 of the initial charge is put in contact with the sphere B that has Q / 2 of the initial charge, the total charge is the sum of the charge
q = Q / 4 + Q / 2 = ¾ Q
This is the charge distributed between the two spheres, sphere A is 3/8 Q and sphere B is 3/8 Q
q_A = 3/8 Q
q_B = 3/8 Q
The final charges of each sphere are:
q_A = 3/8 Q
q_B = 3/8 Q
q_C = 3/4 Q
Answer:
955.5N
Explanation:
The normal force is given by the difference between the centripetal force and gravity at the top of the loop:

mass m = 65kg
radius of the loop r = 4m
velocity v = ?
g = 9.8 m/s²
To find the centripetal force, you need to find the velocity of the car at the top of the loop.
Use energy conservation:

At the top of the hill:

At the top of the loop:

Setting both energies equal and canceling the mass m gives:

Solving for v:

Using v in the first equation:

Answer: option B: conduction.
Conduction is the heat transfer that happens between two bodies in direct contact, due to the collision of the molecules, atoms and electrons within the body (microscopical level).