1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
monitta
3 years ago
15

A student jobs around a square park two times. Starting and ending at the gate to the park. The square jogging track is 40 meter

s on each side. Which of the following statements is TRUE?
The distance was 320 meters, and displacement was 160 meters


The distance was 160 meters, and displacement was 40 meters


The distance was 320 meters, and the displacement was 320 meters


The distance was 320 meters, the displacement was 0 meters
Physics
2 answers:
swat323 years ago
6 0
The LAST choice is the correct one.
olga nikolaevna [1]3 years ago
3 0
The answer would be the first one
You might be interested in
A 1 036-kg satellite orbits the Earth at a constant altitude of 98-km. (a) How much energy must be added to the system to move t
Veronika [31]

Answer:

a) The Energy added should be 484.438 MJ

b) The  Kinetic Energy change is -484.438 MJ

c) The Potential Energy change is 968.907 MJ

Explanation:

Let 'm' be the mass of the satellite , 'M'(6×10^{24} be the mass of earth , 'R'(6400 Km) be the radius of the earth , 'h' be the altitude of the satellite and 'G' (6.67×10^{-11} N/m) be the universal constant of gravitation.

We know that the orbital velocity(v) for a satellite -

v=\sqrt{\frac{Gmm}{R+h} }         [(R+h) is the distance of the satellite   from the center of the earth ]

Total Energy(E) = Kinetic Energy(KE) + Potential Energy(PE)

For initial conditions ,

h = h_{i} = 98 km = 98000 m

∴Initial Energy (E_{i})  = \frac{1}{2}mv^{2} + \frac{-GMm}{(R+h_{i} )}

Substituting v=\sqrt{\frac{GMm}{R+h_{i} } } in the above equation and simplifying we get,

E_{i} = \frac{-GMm}{2(R+h_{i}) }

Similarly for final condition,

h=h_{f} = 198km = 198000 m

∴Final Energy(E_{f}) = \frac{-GMm}{2(R+h_{f}) }

a) The energy that should be added should be the difference in the energy of initial and final states -

∴ ΔE = E_{f} - E_{i}

        = \frac{GMm}{2}(\frac{1}{R+h_{i} } - \frac{1}{R+h_{f} })

Substituting ,

M = 6 × 10^{24} kg

m = 1036 kg

G = 6.67 × 10^{-11}

R = 6400000 m

h_{i} = 98000 m

h_{f} = 198000 m

We get ,

ΔE = 484.438 MJ

b) Change in Kinetic Energy (ΔKE) = \frac{1}{2}m[v_{f} ^{2} - v_{i} ^{2}]

                                                          = \frac{GMm}{2}[\frac{1} {R+h_{f} } - \frac{1} {R+h_{i} }]

                                                          = -ΔE                                                            

                                                          = - 484.438 MJ

c)  Change in Potential Energy (ΔPE) = GMm[\frac{1}{R+h_{i} } - \frac{1}{R+h_{f} }]

                                                             = 2ΔE

                                                             = 968.907 MJ

3 0
3 years ago
Radiation present in the environment but not produced by humans is called ______.
mafiozo [28]

Answer:

background

Explanation:

5 0
2 years ago
Which of the following describes resistance force?
Verdich [7]
Force applied by the machine to over come resistance
5 0
3 years ago
Read 2 more answers
A jet plane lands with a speed of 100 m/s and can
kiruha [24]

Answer:

a) t = 20 [s]

b) Can't land

Explanation:

To solve this problem we must use kinematics equations, it is of great importance to note that when the plane lands it slows down until it reaches rest, ie the final speed will be zero.

a)

v_{f}=v_{i}-(a*t)

where:

Vf = final velocity = 0

Vi = initial velocity = 100 [m/s]

a = desacceleration = 5 [m/s^2]

t = time [s]

Note: the negative sign of the equation means that the aircraft slows down as it stops.

0 = 100 - 5*t

5*t = 100

t = 20 [s]

b)

Now we can find the distance using the following kinematics equation.

x -x_{o}=(v_{o}*t)+\frac{1}{2}*a*t^{2}

x - xo = distance [m]

x -xo = (0*20) + (0.5*5*20^2)

x - xo =  1000 [m]

1000 [m] = 1 [km]

And the runaway is 0.8 [km], therefore the jetplane needs 1 [km] to land. So the jetpalne can't land

4 0
3 years ago
In a concave mirror parallel rays falling on it convergs at
ella [17]

Answer:

1) In a concave mirror parallel rays falling on it converges at F and 2F.

Explanation:

Spherical mirrors can be used for magnification of images. There are basically two types of spherical mirrors and they are converging mirror and diverging mirrors. The converging mirrors are also termed as concave mirrors and its basic work is to converge or combine light rays coming from a larger distance to a single point. Mostly the light beams falling parallel to the principle axis of the concave mirror will be acting as parallel rays. And when these parallel rays fall on the mirror, the converging point can be the focal point of the mirror.

Thus the location of converging point in concave mirrors will be based on the position or distance of object from the mirror. If the object distance is very far from the twice the focal length distance of mirror, then the converging point will be the focal point or F. And if the object is placed slightly greater than twice the distance of focal point, then the image will be obtained at 2F. But the parallel beams will be converging at F and 2F.

5 0
3 years ago
Other questions:
  • A bat hits a moving baseball. If the bat delivers a net eastward impulse of 1.3 N-s and the ball starts with an initial horizont
    9·1 answer
  • What is the applied voltage of a circuit that has 10 amps of current and 12 ohms of resistance?
    11·1 answer
  • 1. A 46000N helicopter feels a net force of 9200N. What litt force is exerted by the air on the propellers?
    6·1 answer
  • How long will the energy in a 1470-kJ (350-kcal) cup of yogurt last in a woman doing work at the rate of 150 W with an efficienc
    12·1 answer
  • Can you help
    8·1 answer
  • 2 (a) What is the distance from the Sun to Earth in terms of solar radii? Earth radii?
    12·1 answer
  • What is the answer to this question?
    7·1 answer
  • Please help, only answer if your 1000% correct im in summer school and need to pass this class
    15·2 answers
  • Sebanyak 80g emas bersuhu 30°C diberi kalor sebesar 1512 J.Jika kalor jenis emas 126 J/kg K,suhu akhir emas setelah diberi kalor
    10·1 answer
  • A force of 100 newtons is applied to a box at an angle of 36° with the horizontal. If the mass of the box is 25 kilograms, what
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!