1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
11111nata11111 [884]
3 years ago
15

A coffee machine transfers 12 kj of energy in 15 seconds. It uses 230 v mains supply. Use this information to work out the curre

nt through the coffee machine
Physics
1 answer:
Otrada [13]3 years ago
6 0

Answer:

3.5 A

Explanation:

You might be interested in
You launch a cannonball at an angle of 35° and an initial velocity of 36 m/s (assume y = y₁=
velikii [3]

Answer:

Approximately 4.2\; {\rm s} (assuming that the projectile was launched at angle of 35^{\circ} above the horizon.)

Explanation:

Initial vertical component of velocity:

\begin{aligned}v_{y} &= v\, \sin(35^{\circ}) \\ &= (36\; {\rm m\cdot s^{-1}})\, (\sin(35^{\circ})) \\ &\approx 20.6\; {\rm m\cdot s^{-1}}\end{aligned}.

The question assumed that there is no drag on this projectile. Additionally, the altitude of this projectile just before landing y_{1} is the same as the altitude y_{0} at which this projectile was launched: y_{0} = y_{1}.

Hence, the initial vertical velocity of this projectile would be the exact opposite of the vertical velocity of this projectile right before landing. Since the initial vertical velocity is 20.6\; {\rm m\cdot s^{-1}} (upwards,) the vertical velocity right before landing would be (-20.6\; {\rm m\cdot s^{-1}}) (downwards.) The change in vertical velocity is:

\begin{aligned}\Delta v_{y} &= (-20.6\; {\rm m\cdot s^{-1}}) - (20.6\; {\rm m\cdot s^{-1}}) \\ &= -41.2\; {\rm m\cdot s^{-1}}\end{aligned}.

Since there is no drag on this projectile, the vertical acceleration of this projectile would be g. In other words, a = g = -9.81\; {\rm m\cdot s^{-2}}.

Hence, the time it takes to achieve a (vertical) velocity change of \Delta v_{y} would be:

\begin{aligned} t &= \frac{\Delta v_{y}}{a_{y}} \\ &= \frac{-41.2\; {\rm m\cdot s^{-1}}}{-9.81\; {\rm m\cdot s^{-2}}} \\ &\approx 4.2\; {\rm s} \end{aligned}.

Hence, this projectile would be in the air for approximately 4.2\; {\rm s}.

8 0
1 year ago
Read 2 more answers
car traveling on a flat (unbanked), circular track accelerates uniformly from rest with a tangential acceleration of a. The car
Luba_88 [7]

Answer:

0.572

Explanation:

First examine the force of friction at the slipping point where Ff = µsFN = µsmg.

the mass of the car is unknown,

The only force on the car that is not completely in the vertical direction is friction, so let us consider the sums of forces in the tangential and centerward directions.

First the tangential direction

∑Ft =Fft =mat

And then in the centerward direction ∑Fc =Ffc =mac =mv²t/r

Going back to our constant acceleration equations we see that v²t = v²ti +2at∆x = 2at πr/2

So going backwards and plugging in Ffc =m2atπr/ 2r =πmat

Ff = √(F2ft +F2fc)= matp √(1+π²)

µs = Ff /mg = at /g √(1+π²)=

1.70m/s/2 9.80 m/s² x√(1+π²)= 0.572

7 0
3 years ago
A uniform stationary ladder of length L and mass M leans against a smooth vertical wall, while its bottom legs rest on a rough h
ikadub [295]

Answer:A uniform ladder of mass and length leans at an angle against a frictionless wall .If the coefficient of static friction between the ladder and the ground is , determine a formula for the minimum angle at which the ladder will not slip.

Explanation:A uniform ladder of mass and length leans at an angle against a frictionless wall .If the coefficient of static friction between the ladder and the ground is , determine a formula for the minimum angle at which the ladder will not slip.

3 0
3 years ago
How was the gravitational constant G first determined
Oliga [24]
<span>In equation form, this is often expressed as follows: The constant of proportionality in this equation is G - the universal gravitation constant. The value of G was not experimentally determined until nearly a century later (1798) by Lord Henry Cavendish using a torsion balance.</span>
6 0
3 years ago
_____ have a nearly circular orbit.
bezimeni [28]
B. Asteroids have a nearly circular orbit.
4 0
3 years ago
Other questions:
  • Which of the following does not use an internal combustion enginea. a cannonb. a lawnmowerc. a windmilld. a car
    12·2 answers
  • When the vapor pressure of a liquid is equal to the atmospheric pressure the liquid?
    8·2 answers
  • the celsius temperature of a 3.00-L sample gas is lowered from 80.0 C to 30.0 C what will be the resulting volume of this gas
    9·2 answers
  • a 5.5 g dart is fired into a block of wood with a mass of 22.6 g. the wood block is initially at rest on a 1.5 m tall post. afte
    5·1 answer
  • An astronaut takes an iPod onto the space shuttle. An identical iPod remains on Earth. Which statement about the pull of Earth's
    13·1 answer
  • A car travels along a straight road at a steady 40 MPH.Are the forces on the car balanced or unbalanced? Explain.
    12·1 answer
  • The price of coffee fell sharply last month, while the quantity sold remained the same. Five people suggest various explanations
    10·1 answer
  • A large sheet of charge has a uniform charge density of 9  μCm2. What is the electric field due to this charge at a point just
    6·1 answer
  • Using average rates of money growth and inflation in the United States over many decades, Friedman and Schwartz found that decad
    13·1 answer
  • Which of the following is the most important difference between a permanent magnet and a electromagnet
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!