The answer you're looking for is B. The bond will be ionic.
Rhodium. FYI google it lol would have been faster
Answer:
After the transfer the pressure inside the 20 L vessel is 0.6 atm.
Explanation:
Considering O2 as an ideal gas, it is at an initial state (1) with V1 = 3L and P1 = 4 atm. And a final state (2) with V2 = 20L. The temperature remain constant at all the process, thus here applies the Boyle-Mariotte law. This law establishes that at a constant temperature an ideal gas the relationship between pressure and volume remain constant at all time:

Therefore, for this problem the step by step explanation is:

Clearing P2 and replacing

Answer:
Explanation:
A bronsted lowry acid just means that it donates a proton.
An arrhenius acid dissolves in water to donate a proton
the only difference is that an arrhenius acid must dissolve in water but it still donates a proton so it is considered a bronsted lowry acid