The change in pH is calculated by:
pOH = Protein kinase B + log [NH4+]/ [NH3]
Protein kinase B of ammonia = 4.74
initial potential of oxygen hydroxide= 4.74 + log 0.100/0.100 = 4.74
pH = 14 - 4.74=9.26
moles NH4+ = moles NH3 = 0.100 L x 0.100 M = 0.0100
moles H+ added = 3.00 x 10^-3 L x 0.100 M=0.000300
NH3 + H+ = NH4+
moles NH3 = 0.0100 - 0.000300=0.00970
moles NH4+ = 0.0100 + 0.000300=0.0103
pOH = 4.74 + log 0.0103/ 0.00970= 4.77
oH = 14 - 4.77 = 9.23
the change is = 9.26 - 9.23 =0.03
Feso3 compound name
Iron(II) Sulfite FeSO3 Molecular Weight
Hope this helps!
Have a great day :)
HUNDRED GRAMS too because of the law of conservation of mass. The law of conservation of mass states that mass is neither created nor destroyed. So both sides will have the same mass
I believe the answer is option B. The bonded pair of valence electrons are shown using circles
Answer:
a. in supernovae and star collisions
Explanation:
The periodical table contains some heavier elements, which are formed as neutron stars pairs hit eachother and erupt cataclysmically.
The star emitts very large quantities of energy and neutrons during supernova, which allow for the production of heavier elements than iron, such as uranium and gold. All these elements are ejected into space during the supernova explosion.