Answer:
-219.99kJ
Explanation:
The acronym '' NADH'' simply stands for what is known as coenzyme 1 with full meaning of Nicotinamide Adenine Dinucleotide Hydride. This substance is useful in the production of energy. The oxidation reaction of NADH causes it to produce NADP⁺ and the oxygen produces water when it is in the reduction process. The balanced equation for the oxidation reaction is given below as:
NADPH ---------------------------------------------------------------------> NADP⁺H⁺ + 2e⁻.
Also, the balanced equation for the reduction reaction is given below as:
O₂ + 2H⁺ + 2e⁻ --------------------------------------------------------------> H₂O.
It can be shown from the above REDOX reaction that the total number of electrons getting transferred is 2.
The Gibbs energy = -nFE. where n = 2, F = faraday's constant = 96485.3329 C and E = overall cell potential.
The overall cell potential = E[ reduction reaction] - E[oxidation reaction] = 0.82 - (- 0.32 ) = 1.14 V.
Hence, the Gibbs energy = - 2 × 96485.3329 × 1.14 = -219.99kJ
Answer:
Find the domain and the range of the following:
x y
3 2
5 7
1 4
9 2
3 7
Explanation:
Answer:
D
Explanation: An exothermic change is Because it has heat.
Explanation:
Monosaccharides are simple carbohydrates that cannot be further hydrolyzed to simpler carbohydrates. They contain between three and six carbon atoms per molecule.
Polysaccharides are complex carbohydrates . They are condensation polymers derived from very long chains of monosaccharide units.
Structurally, polysaccharides are made up of repeating units of monosaccharides.
The number of Ml of C₅H₈ that can be made from 366 ml C₅H₁₂ is 314.7 ml of C₅H₈
<u><em>calculation</em></u>
step 1: write the equation for formation of C₅H₈
C₅H₁₂ → C₅H₈ + 2 H₂
Step 2: find the mass of C₅H₁₂
mass = density × volume
= 0.620 g/ml × 366 ml =226.92 g
Step 3: find moles Of C₅H₁₂
moles = mass÷ molar mass
from periodic table the molar mass of C₅H₁₂ = (12 x5) +( 1 x12) = 72 g/mol
moles = 226.92 g÷ 72 g/mol =3.152 moles
Step 4: use the mole ratio to determine the moles of C₅H₈
C₅H₁₂:C₅H₈ is 1:1 from equation above
Therefore the moles of C₅H₈ is also = 3.152 moles
Step 5: find the mass of C₅H₈
mass = moles x molar mass
from periodic table the molar mass of C₅H₈ = (12 x5) +( 1 x8) = 68 g/mol
= 3.152 moles x 68 g/mol = 214.34 g
Step 6: find Ml of C₅H₈
=mass / density
= 214.34 g/0.681 g/ml = 314.7 ml