ANSWER:
4 a) Specific elements have more than one oxidation state, demonstrating variable valency.
For example, the following transition metals demonstrate varied valence states:
,
,
, etc.
Normal metals such as
also show variable valencies. Certain non-metals are also found to show more than one valence state ![Pb^{3+} and Pb^{5+}.](https://tex.z-dn.net/?f=Pb%5E%7B3%2B%7D%20and%20Pb%5E%7B5%2B%7D.)
4 b) Isotopes are members of a family of an element that all have the same number of protons but different numbers of neutrons.
For example, Carbon-14 is a naturally occurring radioactive isotope of carbon, having six protons and eight neutrons in the nucleus. However, C-14 does not last forever and there will come a time when it loses its extra neutrons and becomes Carbon-12.
5 a)
→
5 b)
→ ![3Pb (NO_3)_2 + 4H_2O + 2NO_2](https://tex.z-dn.net/?f=3Pb%20%28NO_3%29_2%20%2B%204H_2O%20%2B%202NO_2)
5 c)
→
(already balanced so don't need to change)
5 d)
→
5 e)
→ ![2MgCl + H_2](https://tex.z-dn.net/?f=2MgCl%20%2B%20H_2)
EXPLANATION (IF NEEDED):
1. Write out how many atoms of each element is on the left (reactant side) and right (product side) of the arrow.
2. Start multiplying each side accordingly to try to get atoms of the elements on both sides equal.
EXAMPLE OF BALANCING:
Answer:
B) any complex thing with properties normally associated with living things
Answer:
The amount of energy released from the combustion of 2 moles of methae is 1,605.08 kJ/mol
Explanation:
The chemical reaction of the combustion of methane is given as follows;
CH₄ (g) + 2O₂ (g) → CO₂ (g) + 2H₂O (g)
Hence, 1 mole of methane combines with 2 moles of oxygen gas to form 1 mole of carbon dioxide and 2 moles of water vapor
Where:
CH₄ (g): Hf = -74.6 kJ/mol
CO₂ (g): Hf = -393.5 kJ/mol
H₂O (g): Hf = -241.82 kJ/mol
Therefore, the combustion of 1 mole of methane releases;
-393.5 kJ/mol × 1 + 241.82 kJ/mol × 2 + 74.6 kJ/mol = -802.54 kJ/mol
Hence the combustion of 2 moles of methae will rellease;
2 × -802.54 kJ/mol or 1,605.08 kJ/mol.
Answer:
Fluorine
Explanation:
Fluorine has 9 total electrons. The first two are in the 1s level, and the remaining electrons are on the outer level of the atom, with 2 in the s level and 5 in the p level. The electron configuration is 1s2 2s2 2p5.