Answer:
All of the above processes have a ΔS < 0.
Explanation:
ΔS represents change in entropy of a system. Entropy refers to the degree of disorderliness of a system.
The question requests us to identify the process that has a negative change of entropy.
carbon dioxide(g) → carbon dioxide(s)
There is a change in state from gas to solid. Solid particles are more ordered than gas particles so this is a negative change in entropy.
water freezes
There is a change in state from liquid to solid. Solid particles are more ordered than liquid particles so this is a negative change in entropy.
propanol (g, at 555 K) → propanol (g, at 400 K)
Temperature is directly proportional to entropy, this means higher temperature leads t higher entropy.
This reaction highlights a drop in temperature which means a negative change in entropy.
methyl alcohol condenses
Condensation is the change in state from gas to liquid. Liquid particles are more ordered than gas particles so this is a negative change in entropy.
Answer:

FCI=88.0818 MM≅88 MM
Explanation:
Empirical correlation based on the work of Bridgwater and Mumford (1979):
For Liquid or solid phase Plants:
F<60,000 tonne/yr Eq (1)
F≥60,000 tonnes/yr Eq (2)
Where:
N is the number of functional units
F is the process throughput tonnes/yr
In our case F=40,000 tonne/yr <60,000 tonne/yr, We are going to use Eq (1)
F<60,000 tonne/yr
N=8, F=40,000 tonne/yr

FCI=88.0818 MM≅88 MM
Answer:
2CaO + 2CO2 → 2CaCO2 + O2 is right