Answer: This can be quickly solved with "traintracks"
Explanation:
You start w/ grams of water and want to find moles of oxygen gas produced.
So you want to Convert:
Grams of water -> moles of water -> moles of oxygen gas.
The two things you need to know to set up the tracks are:
1)Molar mass of water- H2O
Hydrogen - 1.008(x2)
Oxygen - 16.00
Water - 18.016
2 Al + 6 HCl → 2 AlCl₃ + 3 H₂ (single displacement)
Ca + Br₂ → CaBr₂ (synthesis)
4 NH₃ + 5 O₂ → 4 NO + 6 H₂O (combustion)
2 NaCl → 2 Na + Cl₂ (decomposition)
FeS + 2 HCl → FeCl₂ + H₂S (double displacement)
single displacement - is a chemical reaction of the following type: A + BC → AC + B
double displacement - is a chemical reaction of the following type: AB + CD → AC + BD
synthesis - the chemical product is obtained by combining in a synthesis the constituent elements
combustion - usually a exothermic reaction of a particular compound with oxygen
decomposition - degradation of a compound in simpler elements
solution:
1000 = m*2400*(78-22) + m*8.79*10^5
1000= 134400m + 879000m
1000= 1030200m
m = 1000/1013400
m= 1013.4 grams
the final answer is 0.9706 grams
Use the ideal gas equation PV=nRT. You can compare before and after using P1V1/n1T1=P2V2/n2T2. Since the number of moles remains constant you can disregard moles from the equation and use pressure, volume and temp. Make sure your pressure is converted to atmospheres, your volume is in liters, and your temperature is in kelvins.
If it is a really humid warm day, have you ever noticed that's when all electrical storms occur