Answer:
Points C,D, E and F are coplanar.
8 feet, because 10^{2} - 6^{2} = 64;
\sqrt{64} = 8[tex]
Answer:
- 0.100
Step-by-step explanation:
Length of the ladder, H = 6 m
Distance at the bottom from the wall, B = 1.3 m
Let the distance of top of the ladder from the bottom at the wall is P
Thus,
from Pythagoras theorem,
B² + P² = H² .
or
B² + P² = 6² ..............(1) [Since length of the ladder remains constant]
at B = 1.3 m
1.3² + P² = 6²
or
P² = 36 - 1.69
or
P² = 34.31
or
P = 5.857
Now,
differentiating (1)

at t = 2 seconds
change in B = 0.3 × 2= 0.6 ft
Thus,
at 2 seconds
B = 1.3 + 0.6 = 1.9 m
therefore,
1.9² + P² = 6²
or
P = 5.69 m
on substituting the given values,
2(1.9)(0.3) + 2(5.69) ×
= 0
or
1.14 + 11.38 ×
= 0
or
11.38 ×
= - 1.14
or
= - 0.100
here, negative sign means that the velocity is in downward direction as upward is positive
Answer:



Step-by-step explanation:
Number of Men, n(M)=24
Number of Women, n(W)=3
Total Sample, n(S)=24+3=27
Since you cannot appoint the same person twice, the probabilities are <u>without replacement.</u>
(a)Probability that both appointees are men.

(b)Probability that one man and one woman are appointed.
To find the probability that one man and one woman are appointed, this could happen in two ways.
- A man is appointed first and a woman is appointed next.
- A woman is appointed first and a man is appointed next.
P(One man and one woman are appointed)

(c)Probability that at least one woman is appointed.
The probability that at least one woman is appointed can occur in three ways.
- A man is appointed first and a woman is appointed next.
- A woman is appointed first and a man is appointed next.
- Two women are appointed
P(at least one woman is appointed)

In Part B, 
Therefore:
