It depends on what they are
Light that enters the new medium <em>perpendicular to the surface</em> keeps sailing straight through the new medium unrefracted (in the same direction).
Perpendicular to the surface is the "normal" to the surface. So the angle of incidence (angle between the laser and the normal) is zero, and the law of refraction (just like the law of reflection) predicts an angle of zero between the normal and the refracted (or the reflected) beam.
Moral of the story: If you want your laser to keep going in the same direction after it enters the water, or to bounce back in the same direction it came from when it hits the mirror, then shoot it <em>straight on</em> to the surface, perpendicular to it.
Answer:
Correct answer: Fg = m · g
Explanation:
Newton's second law states that if a resultant force is applied to an object, the object begins to move at an accelerated rate.
The formula that presents this is:
F = m · a
this formula applies to an object moving on some surface
where m is the mass of the object and a the acceleration of the object
Let's take it now and watch the free fall:
The formula that presents this is:
Fg = m · g
this formula applies to an object moving at free fall in vertical direction
Free fall is also an accelerated movement to which Newton's second law applies.
where m is the mass of the object and g the gravitation acceleration of the object . We also know that g is equal:
g = γ · Me / d² where Me is mass of the earth
God is with you!!!