In the modern model of the atoms over 99.9℅ of the atom is made up of empty space
To solve this problem we will apply the concepts related to the potential, defined from the Coulomb laws for which it is defined as the product between the Coulomb constant and the load, over the distance that separates the two objects. Mathematically this is

k = Coulomb's constant
q = Charge
r = Distance between them


Replacing,



Therefore the potential at the surface of the raindrop is 135 V
Answer:
0.33 s
Explanation:
For this case, as the object is hung on the end of an unstretched spring, we can consider this system as a simple pendulum.
For this system, we can determine the period of the motion using the following formula:
T = 2π√(L/g)
Where: T = period (in sec), L = lenght of the spring, g = acceleration of garvity = 9.8 m/s²
By the exact time the object is 2.75 cm before coming to rest, that will be the lenght of the spring we can consider (2.75 cm = 0.0275 m)
Finally:
T = 2π√(0.00275/9.8)
T = 0.33 sec
the model most likely represents the positions of earth, sun, and moon when there is: greatest difference between high and low tides
The high and low tides are created because of the combination of effects from the moon's gravitational forces with the sun's gravitational forces that affect the tide as the earth rotates