Answer:
The speed of the spider is v = (2g*L*(1-cosθ))^1/2
Explanation:
using the energy conservation equation we have to:
Ek1 + Ep1 = Ek2 + Ep2
where
Ek1 = kinetic energy = 0
Ep1 = potential energy = m*g*L*cosθ
Ek2 = (m*v^2)/2
Ep2 = m*g*L
Replacing, we have:
0 - m*g*L*cosθ = (m*v^2)/2 - m*g*L
(m*v^2)/2 = m*g*L*(1-cosθ)
v^2 = 2g*L*(1-cosθ)
v = (2g*L*(1-cosθ))^1/2
Solo dígales cómo se siente, dígales que no está contento porque está triste y no sabe qué hacer al respecto, que está deprimido, y que solo quiere que las cosas mejoren.
To answer the problem we would be using this formula which isE = hc/L where E is the energy, h is Planck's constant, c is the speed of light and L is the wavelength
L = hc/E = 4.136×10−15 eV·s (2.998x10^8 m/s)/10^4 eV
= 1.240x10^-10 m
= 1.240x10^-1 nm
The statement is false. Vectors are used to solve projectile motion problems because they allow the analysis of one direction at a time for two-dimensional motion. Scalar quantities can be used to analyze linear motion problem, but not projectile motion.