At that point it is no longer trying to uncompress nor is it trying to stretch. This is the same thing as a pendulum at the bottom of its swing, no longer falling but not yet rising against gravity. Thus the kinetic energy there is the same as the potential energy when it is compressed. The energy of compression is

This gives E=0.5(37)(0.2)²=
0.74JThis is the same as the kinetic energy when it is at natural length
<u>Answer:</u>
The velocity is 30.279 m/s
<u>Explanation</u>:
Consider the initial speed of the semi-trailer be v
Then, initial kinetic energy = 
According to question, the semi-trailer coast along a ramp, which is inclined at an angle of 170, and to a distance of 160m to stop
Change in vertical position =
= 46.779m
Final potential energy of semitrailer = mgh
Applying principle of conservation of energy,
= mgh
Solving for v, we get
= 2gh = 2*9.8*46.779 = 916.8684
= 916.8684
v = 30.279 m/s
Therefore, the velocity is 30.279 m/s
Answer:
336.9520 atm
Explanation:
The Gas Equation is as follows;-
Pressure×Volume=Number of Moles × Universal Gas Constant ×Temperature(in Kelvin)
Given Parameters
Number of moles-0.614 mol
Temperature 12°C or 12+273.15 ie 285.15°F
Volume-4.32 L
Universal Gas Constant-8.314 J/mol·K
Pressure -?(in atm)
Plugging in all the values in the Gas Equation:-
Pressure=
Pressure=336.9520 atm
Answer:
a) λ = 189.43 10⁻⁹ m b) λ = 269.19 10⁻⁹ m
Explanation:
The diffraction network is described by the expression
d sin θ= m λ
Where m corresponds to the diffraction order
Let's use trigonometry to find the breast
tan θ = y / L
The diffraction spectrum is measured at very small angles, therefore
tan θ = sin θ / cos θ = sin θ
We replace
d y / L = m λ
Let's place in the first order m = 1
Let's look for the separation of the lines (d)
d = λ L / y
d = 501 10⁻⁹ 9.95 10⁻² / 15 10⁻²
d = 332.33 10⁻⁹ m
Now we can look for the wavelength of the other line
λ = d y / L
λ = 332.33 10⁻⁹ 8.55 10⁻²/15 10⁻²
λ = 189.43 10⁻⁹ m
Part B
The compound wavelength B
λ = 332.33 10⁻⁹ 12.15 10⁻² / 15 10⁻²
λ = 269.19 10⁻⁹ m
The formula to find the kinetic energy is:
Ek= 1/2 × m × v^2
1. Ek= 1/2×15×3^2
= 67.5 J
2.Ek= 1/2×8×4^2
=64 J
3.Ek= 1/2×12×5^2
= 150 J
4.Ek= 1/2×10×6^2
= 180 J
So the fourth dog has the most kinetic energy.