Answer:
<u>We are given:</u>
initial velocity (u) = 20m/s
acceleration (a) = 4 m/s²
time (t) = 8 seconds
displacement (s) = s m
<u />
<u>Solving for Displacement:</u>
From the seconds equation of motion:
s = ut + 1/2 * at²
replacing the variables
s = 20(8) + 1/2 * (4)*(8)*(8)
s = 160 + 128
s = 288 m
The total power emitted by an object via radiation is:

where:
A is the surface of the object (in our problem,


is the emissivity of the object (in our problem,

)

is the Stefan-Boltzmann constant
T is the absolute temperature of the object, which in our case is

Substituting these values, we find the power emitted by radiation:

So, the correct answer is D.
The diagram represents a chain reaction that is caused by nuclear fission.
<h3>What is a nuclear fission reaction?</h3>
A nuclear fission reaction is a reaction in which the nucleus of a larger atom is split into two or more smaller nucleus of atoms.
Nuclear fission can proceed in the form of a chain reaction in which the products of the first fission reaction are used to initiate further fission reactions.
Therefore, the diagram represents a chain reaction that is caused by nuclear fission.
Learn more about nuclear fission at: brainly.com/question/22155336
#SPJ1
Answer:
Explanation:
On both sides of the film , the mediums have lower refractive index.
for interfering pattern from above , for constructive interference of reflected wave from both sides of the film , the condition is
2μt = ( 2n +1 ) λ / 2
μ is refractive index of film ,t is thickness of film λ is wavelength of light
n is order of fringe
for minimum thickness
n = 0
2μt = λ / 2
t = λ / 4μ
= 670 / 1.75 x 4
= 95.71 nm .