1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Olin [163]
3 years ago
14

Can you find the limits of this ​

Mathematics
1 answer:
Pavel [41]3 years ago
6 0

Answer:

\displaystyle  \lim_{x \to -2} \frac{x^3 + 8}{x^4 - 16} = \frac{-3}{8}

General Formulas and Concepts:

<u>Calculus</u>

Limits

Limit Rule [Constant]:                                                                                             \displaystyle \lim_{x \to c} b = b

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Limit Property [Addition/Subtraction]:                                                                   \displaystyle \lim_{x \to c} [f(x) \pm g(x)] =  \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)

L'Hopital's Rule

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

We are given the following limit:

\displaystyle  \lim_{x \to -2} \frac{x^3 + 8}{x^4 - 16}

Let's substitute in <em>x</em> = -2 using the limit rule:

\displaystyle  \lim_{x \to -2} \frac{x^3 + 8}{x^4 - 16} = \frac{(-2)^3 + 8}{(-2)^4 - 16}

Evaluating this, we arrive at an indeterminate form:

\displaystyle  \lim_{x \to -2} \frac{x^3 + 8}{x^4 - 16} = \frac{0}{0}

Since we have an indeterminate form, let's use L'Hopital's Rule. Differentiate both the numerator and denominator respectively:

\displaystyle \lim_{x \to -2} \frac{x^3 + 8}{x^4 - 16} = \lim_{x \to -2} \frac{3x^2}{4x^3}

Substitute in <em>x</em> = -2 using the limit rule:

\displaystyle \lim_{x \to -2} \frac{3x^2}{4x^3} = \frac{3(-2)^2}{4(-2)^3}

Evaluating this, we get:

\displaystyle \lim_{x \to -2} \frac{3x^2}{4x^3} = \frac{-3}{8}

And we have our answer.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit:  Limits

You might be interested in
9. Gabriel is solving 23 x 12. He already multiplied the ones, 2 x 3 = 6. What two digits should he multiply next? How do you kn
Hitman42 [59]

Answer:

20 x 10

Step-by-step explanation:

because these ar​e the remaining digits :D

6 0
3 years ago
What is 312.15 in expanded form?
Andrei [34K]
300+10+2 +.10=.5 hope this helps you
3 0
3 years ago
(a^2- 8a- 26) / (a + 2) simplified
inn [45]

Answer:

a-10 - 6/a+2

Step-by-step explanation:

8 0
3 years ago
1. Identify the place value for the following: 162.891
Advocard [28]

Answer:

Hundreds : 1

Tens : 6

Ones : 2

.

Tenths : 8

Hundredths : 9

Thousandths : 1

7 0
2 years ago
Answer please :(<br> Solve for the missing angles <br> 1:<br> 2:<br> 3:<br> 4:
Basile [38]
Can’t read the paper sry try again please
6 0
2 years ago
Other questions:
  • How is the graph of y=3(x+1)^2 related to its parent function y=x^2
    13·2 answers
  • What's is 17% of 800. ?
    8·2 answers
  • Reflection across the y-axis B(1,3), H(4,4), D(4,-1)​
    15·1 answer
  • The Ortiz family will travel round-trip from Indianapolis to Denver this summer. The driving distance between the two cities is
    6·1 answer
  • -8(2x+4)+8(4+7x)=8x+3x​
    15·1 answer
  • Halla los cocientes y los restos de estas divisiones de polinomios pordos procedimientos diferentes
    9·1 answer
  • there are seventeen students in a class. twice a year each student gets a new box of crayons. boxes of crayons are package in gr
    15·2 answers
  • Pleaseee helppp answer correctly !!!!!!!!!!!!!! Will mark Brianliest !!!!!!!!!!!!!!!!!
    7·1 answer
  • A football is kicked upward from a height of 6 feet with an initial speed of 70 feet per second. Use the formula to find the bal
    8·1 answer
  • Let f(x)=x^{2}+18x+7\ and\ g(x)=-3x^{2}+2x-9.f(x)=x^2 +18x+7 and g(x)=−3x^2 +2x−9. Identify the solution(s) of f(x)=g(x).f(x)=g(
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!