Answer:
Explanation
Given that 36% are recessive in traits
100-36 = 64% for dominant traits considering a whole population to be 100%
P=dominant allele
q= recessive allele
P2= dominant genotype
q2= recessive genotype
according to hardyweinberg principle, p+q=1
64/100= 0.64 frequency for dominant traits or genotype, therefore
p2=0.64
then
P=√0.64
p= 0.8
Therefore, dominant allele frequency (p) for the population is 0.8
Answer:
The C. elegans embryo is a powerful model system for studying the mechanics of metazoan cell division. Its primary advantage is that the architecture of the syncytial gonad makes it possible to use RNAi to generate oocytes whose cytoplasm is reproducibly (typically >95%) depleted of targeted essential gene products via a process that does not depend exclusively on intrinsic protein turnover. The depleted oocytes can then be analyzed as they attempt their first mitotic division following fertilization. Here we outline the characteristics that contribute to the usefulness of the C. elegans embryo for cell division studies. We provide a timeline for the first embryonic mitosis and highlight some of its key features. We also summarize some of the recent discoveries made using this system, particularly in the areas of nuclear envelope assembly/ dissassembly, centrosome dynamics, formation of the mitotic spindle, kinetochore assembly, chromosome segregation, and cytokinesis.
1. The C. elegans embryo as a system to study cell division
The C. elegans embryo is a powerful model system for studying the mechanics of metazoan cell division. Its primary advantage is that the syncytial gonad makes it possible to use RNA interference (RNAi) to generate oocytes whose cytoplasm is reproducibly (>95%) depleted of targeted essential gene products. Introduction of dsRNA rapidly catalyzes the destruction of the corresponding mRNA in many different systems. However, depletion of pre-existing protein is generally a slow process that depends on the half-life of the targeted protein. In contrast, in the C. elegans gonad, the protein present when the dsRNA is introduced is depleted by the continual packaging of maternal cytoplasm into oocytes (Figure 1). Since depletion relies on the rate of embryo production instead of protein half-life, the kinetics tend to be similar for different targets. By 36-48 hours after introduction of the dsRNA, newly formed oocytes are typically >95% depleted of the target protein.
Explanation:
Natural selection can cause speciation, which increases the biodiversity of an ecosystem. Several bacterial colonies are placed on a petri dish that contains agar with antibiotics. After 24 hours, ninety percent of the original bacteria die, but the remaining ten percent survive and later reproduce.
An apple is not an organism, but the cells within it are