The vector ab has a magnitude of 20 units and is parallel to the
vector 4i + 3j. Hence, The vector AB is 16i + 12j.
<h3>How to find the vector?</h3>
If we have given a vector v of initial point A and terminal point B
v = ai + bj
then the components form as;
AB = xi + yj
Here, xi and yj are the components of the vector.
Given;
The vector ab has a magnitude of 20 units and is parallel to the
vector 4i + 3j.
magnitude

Unit vector in direction of resultant = (4i + 3j) / 5
Vector of magnitude 20 unit in direction of the resultant
= 20 x (4i + 3j) / 5
= 4 x (4i + 3j)
= 16i + 12j
Hence, The vector AB is 16i + 12j.
Learn more about vectors;
brainly.com/question/12500691
#SPJ1
Answer:
The values of
so that
have vertical asymptotes are
,
,
,
,
.
Step-by-step explanation:
The function cosecant is the reciprocal of the function sine and vertical asymptotes are located at values of
so that function cosecant becomes undefined, that is, when function sine is zero, whose periodicity is
. Then, the vertical asymptotes associated with function cosecant are located in the values of
of the form:
, 
In other words, the values of
so that
have vertical asymptotes are
,
,
,
,
.
Multiply the money * the hours
5*7= 35
Answer : $35
10/24 x 100 = 41.66
Approximately 42% of her day