Answer:
The answer you are looking for is the letter B on your assignment hun. Merry almost Christmas☃️
D 20 cubic feet would be your answer
Answer:

General Formulas and Concepts:
<u>Calculus</u>
Limits
Limit Rule [Constant]: 
Limit Rule [Variable Direct Substitution]: 
Limit Property [Addition/Subtraction]: ![\displaystyle \lim_{x \to c} [f(x) \pm g(x)] = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%20c%7D%20%5Bf%28x%29%20%5Cpm%20g%28x%29%5D%20%3D%20%20%5Clim_%7Bx%20%5Cto%20c%7D%20f%28x%29%20%5Cpm%20%5Clim_%7Bx%20%5Cto%20c%7D%20g%28x%29)
L'Hopital's Rule
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]: ![\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%20%2B%20g%28x%29%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bg%28x%29%5D)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Step-by-step explanation:
We are given the following limit:

Let's substitute in <em>x</em> = -2 using the limit rule:

Evaluating this, we arrive at an indeterminate form:

Since we have an indeterminate form, let's use L'Hopital's Rule. Differentiate both the numerator and denominator respectively:

Substitute in <em>x</em> = -2 using the limit rule:

Evaluating this, we get:

And we have our answer.
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits
Answer: They are diffrent
Step-by-step explanation: The logistic equation was first published by Pierre Verhulst in 1845. This differential equation can be coupled with the initial condition P(0) = P0 to form an initial-value problem for P(t). Suppose that the initial population is small relative to the carrying capacity. Then P K is small, possibly close to zero.
The logistic regression coefficients are the coefficients b 0, b 1, b 2,... b k of the regression equation: An independent variable with a regression coefficient not significantly different from 0 (P>0.05) can be removed from the regression model (press function key F7 to repeat the logistic regression procedure).
By the way, this is copied from the internet.
I believe the awnser would be 5. what you have to do is you plug in the -1 where the x is, remember that the 2 is a negative so that would make it a positive 2. I'm not sure if your teacher taught you this but my teacher taught us that f(x)=Mx+b is just another version of y=Mx+b.