The x-y coordinates for the given equation are: (-2,11),(-1,7),(0,3), (1,-1) and (2,-5).
<h3>Linear Function</h3>
A linear function can be represented by a line. The standard form for this equation is: ax+b , for example, y=2x+7. Where:
- a= the slope;
- b=the constant term that represents the y-intercept.
The given equation is 16x + 4y = 12. For solving this question, you should replace the given values of x for finding the values of y.
Thus,
- For x= -2, the value of y will be:
16*(-2)+4y=12
-32+4y=12
4y=12+32
4y=44
y=11
- For x= -1, the value of y will be:
16*(-1)+4y=12
- -16+4y=12
- 4y=12+16
- 4y=28
- y=7
- For x= 0, the value of y will be:
16*(0)+4y=12
- For x= 1, the value of y will be:
16*(1)+4y=12
- 16+4y=12
- 4y=12-16
- 4y=-4
- y= -1
- For x= 2, the value of y will be:
16*(2)+4y=12
- 32+4y=12
- 4y=12-32
- 4y=-20
- y= -5
Read more about the linear equation here:
brainly.com/question/1884491
#SPJ1
Answer:
1. C. cylindrical coordinates
2 A. spherical coordinates
3. A. spherical coordinates
4. D. Cartesian coordinates
5 B. polar coordinates
Step-by-step explanation:
USE THE BOUNDARY INTERVALS TO IDENTIFY
1. ∭E dV where E is:
x^2 + y^2 + z^2<= 4, x>= 0, y>= 0, z>= 0 -- This is A CYLINDRICAL COORDINATES SINCE x>= 0, y>= 0, z>= 0
2. ∭E z^2 dV where E is:
-2 <= z <= 2,1 <= x^ 2 + y^2 <= 2 This is A SPHERICAL COORDINATES
3. ∭E z dV where E is:
1 <= x <= 2, 3<= y <= 4,5 <= z <= 6 -- This is A SPHERICAL COORDINATES
4. ∫10∫y^20 1/x dx ---- This is A CARTESIAN COORDINATES
5. ∬D 1/x^2 + y^2 dA where D is: x^2 + y^2 <=4 This is A POLAR COORDINATES
Triangle b because it only has 3 sides
First you do what is inside the parentheses. 10 x 5 - 3. 50 - 3 =47. Then you multiply 47 x 5 = 235.