Answer:
= 5/9
Explanation:
This is an exercise that we can solve using Archimedes' principle which states that the thrust is equal to the weight of the desalted liquid.
B = ρ_liquid g V_liquid
let's write the translational equilibrium condition
B - W = 0
let's use the definition of density
ρ_body = m / V_body
m = ρ_body V_body
W = ρ_body V_body g
we substitute
ρ_liquid g V_liquid = ρ_body g V_body
In the problem they indicate that the ratio of densities is 5/9, we write the volume of the bar
V = A h_bogy
Thus
we substitute
5/9 = 
Answer:
non linear square relationship
Explanation:
formula for centripetal force is given as
a = mv^2/r
here a ic centripetal acceleration , m is mass of body moving in circle of radius r and v is velocity of body . If m ,and r are constant we have
a = constant × v^2
a α v^2
hence non linear square relationship
Answer:
Wn = 9.14 x 10¹⁷ N
Explanation:
First we need to find our mass. For this purpose we use the following formula:
W = mg
m = W/g
where,
W = Weight = 675 N
g = Acceleration due to gravity on Surface of Earth = 9.8 m/s²
m = Mass = ?
Therefore,
m = (675 N)/(9.8 m/s²)
m = 68.88 kg
Now, we need to find the value of acceleration due to gravity on the surface of Neutron Star. For this purpose we use the following formula:
gn = (G)(Mn)/(Rn)²
where,
gn = acceleration due to gravity on surface of neutron star = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
Mn = Mass of Neutron Star = Mass of Sun = 1.99 x 10³⁰ kg
Rn = Radius of neutron Star = 20 km/2 = 10 km = 10000 m
Therefore,
gn = (6.67 x 10⁻¹¹ N.m²/kg²)(1.99 x 10³⁰ kg)/(10000)
gn = 13.27 x 10¹⁵ m/s²
Now, my weight on neutron star will be:
Wn = m(gn)
Wn = (68.88)(13.27 x 10¹⁵ m/s²)
<u>Wn = 9.14 x 10¹⁷ N</u>
Any ride that oscillates back and forth or moves only in a complete circle utilizes periodic motion.