1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alekssandra [29.7K]
3 years ago
9

19)

Mathematics
1 answer:
gogolik [260]3 years ago
7 0

Answer:

Step-by-step explanation:

i dont know

You might be interested in
Can someone please help me with these 7 questions please?
yarga [219]

(1)\ (-xy)^3(xz)

Expand

(-xy)^3(xz) = (-x)^3* y^3*(xz)

(-xy)^3(xz) = -x^3* y^3*xz

Rewrite as:

(-xy)^3(xz) = -x^3*x* y^3*z

Apply law of indices

(-xy)^3(xz) = -x^4y^3z

(2)\ (\frac{1}{3}mn^{-4})^2

Expand

(\frac{1}{3}mn^{-4})^2 =(\frac{1}{3})^2m^2n^{-4*2}

(\frac{1}{3}mn^{-4})^2 =\frac{1}{9}m^2n^{-8

(3)\ (\frac{1}{5x^4})^{-2}

Apply negative power rule of indices

(\frac{1}{5x^4})^{-2}= (5x^4)^2

Expand

(\frac{1}{5x^4})^{-2}= 5^2x^{4*2}

(\frac{1}{5x^4})^{-2}= 25x^{8

(4)\ -x(2x^2 - 4x) - 6x^2

Expand

-x(2x^2 - 4x) - 6x^2 = -2x^3 + 4x^2 - 6x^2

Evaluate like terms

-x(2x^2 - 4x) - 6x^2 = -2x^3 -2x^2

Factor out x^2

-x(2x^2 - 4x) - 6x^2 = (-2x-2)x^2

Factor out -2

-x(2x^2 - 4x) - 6x^2 = -2(x+1)x^2

(5)\ \sqrt{\frac{4y}{3y^2}}

Divide by y

\sqrt{\frac{4y}{3y^2}} = \sqrt{\frac{4}{3y}}

Split

\sqrt{\frac{4y}{3y^2}} = \frac{\sqrt{4}}{\sqrt{3y}}

\sqrt{\frac{4y}{3y^2}} = \frac{2}{\sqrt{3y}}

Rationalize

\sqrt{\frac{4y}{3y^2}} = \frac{2}{\sqrt{3y}} * \frac{\sqrt{3y}}{\sqrt{3y}}

\sqrt{\frac{4y}{3y^2}} = \frac{2\sqrt{3y}}{3y}

(6)\ \frac{8}{3 + \sqrt 3}

Rationalize

\frac{8}{3 + \sqrt 3} = \frac{3 - \sqrt 3}{3 - \sqrt 3}

\frac{8}{3 + \sqrt 3} = \frac{8(3 - \sqrt 3)}{(3 + \sqrt 3)(3 - \sqrt 3)}

Apply different of two squares to the denominator

\frac{8}{3 + \sqrt 3} = \frac{8(3 - \sqrt 3)}{3^2 - (\sqrt 3)^2}

\frac{8}{3 + \sqrt 3} = \frac{8(3 - \sqrt 3)}{9 - 3}

\frac{8}{3 + \sqrt 3} = \frac{8(3 - \sqrt 3)}{6}

Simplify

\frac{8}{3 + \sqrt 3} = \frac{4(3 - \sqrt 3)}{3}

(7)\ \sqrt{40} - \sqrt{10} + \sqrt{90}

Expand

\sqrt{40} - \sqrt{10} + \sqrt{90} =\sqrt{4*10} - \sqrt{10} + \sqrt{9*10}

Split

\sqrt{40} - \sqrt{10} + \sqrt{90} =\sqrt{4}*\sqrt{10} - \sqrt{10} + \sqrt{9}*\sqrt{10}

Evaluate all roots

\sqrt{40} - \sqrt{10} + \sqrt{90} =2*\sqrt{10} - \sqrt{10} + 3*\sqrt{10}

\sqrt{40} - \sqrt{10} + \sqrt{90} =2\sqrt{10} - \sqrt{10} + 3\sqrt{10}

\sqrt{40} - \sqrt{10} + \sqrt{90} =4\sqrt{10}

(8)\ \frac{r^2 + r - 6}{r^2 + 4r -12}

Expand

\frac{r^2 + r - 6}{r^2 + 4r -12}=\frac{r^2 + 3r-2r - 6}{r^2 + 6r-2r -12}

Factorize each

\frac{r^2 + r - 6}{r^2 + 4r -12}=\frac{r(r + 3)-2(r + 3)}{r(r + 6)-2(r +6)}

Factor out (r+3) in the numerator and (r + 6) in the denominator

\frac{r^2 + r - 6}{r^2 + 4r -12}=\frac{(r -2)(r + 3)}{(r - 2)(r +6)}

Cancel out r - 2

\frac{r^2 + r - 6}{r^2 + 4r -12}=\frac{r + 3}{r +6}

(9)\ \frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14}

Cancel out x

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4x + 8}{x} \cdot \frac{1}{x^2 - 5x - 14}

Expand the numerator of the 2nd fraction

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4x + 8}{x} \cdot \frac{1}{x^2 - 7x+2x - 14}

Factorize

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4x + 8}{x} \cdot \frac{1}{x(x - 7)+2(x - 7)}

Factor out x - 7

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4x + 8}{x} \cdot \frac{1}{(x + 2)(x - 7)}

Factor out 4 from 4x + 8

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4(x + 2)}{x} \cdot \frac{1}{(x + 2)(x - 7)}

Cancel out x + 2

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4}{x} \cdot \frac{1}{(x - 7)}

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4}{x(x - 7)}

(10)\ (3x^3 + 15x^2 -21x) \div 3x

Factorize

(3x^3 + 15x^2 -21x) \div 3x = 3x(x^2 + 5x -7) \div 3x

Cancel out 3x

(3x^3 + 15x^2 -21x) \div 3x = x^2 + 5x -7

(11)\ \frac{m}{6m + 6} - \frac{1}{m+1}

Take LCM

\frac{m}{6m + 6} - \frac{1}{m+1} = \frac{m(m + 1) - 1(6m + 6)}{(6m + 6)(m + 1)}

Expand

\frac{m}{6m + 6} - \frac{1}{m+1} = \frac{m^2 + m- 6m - 6}{(6m + 6)(m + 1)}

\frac{m}{6m + 6} - \frac{1}{m+1} = \frac{m^2 - 5m - 6}{(6m + 6)(m + 1)}

(12)\ \frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}}

Rewrite as:

\frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}} = \frac{1}{y - 3} \div \frac{2}{y^2 - 9}

Express as multiplication

\frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}} = \frac{1}{y - 3} * \frac{y^2 - 9}{2}

Express y^2 - 9 as y^2 - 3^2

\frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}} = \frac{1}{y - 3} * \frac{y^2 - 3^2}{2}

Express as difference of two squares

\frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}} = \frac{1}{y - 3} * \frac{(y - 3)(y+3)}{2}

\frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}} = \frac{1}{1} * \frac{(y+3)}{2}

\frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}} = \frac{y+3}{2}

Read more at:

brainly.com/question/4372544

3 0
2 years ago
PLEASE ANSWER ASAP!!!WILL GIVE BRAINLIEST!!!!!!!!
Luba_88 [7]

Answer:

segment EF, segment FG, segment GH, and segment EH are congruent

Step-by-step explanation:

In the reasoning, each segment is solved to find 3\sqrt{2} . A square must have congruent sides therefore statement 2 proves that all of the segments are congruent to each other.

7 0
3 years ago
Will give brainlest...............
Aleonysh [2.5K]

Answer:

i 5 x 45

Step-by-step explanation:

7 0
3 years ago
1/10 of 3,000 is 10 times as much as. Explain how to solve this?
fredd [130]
You do 3000 divided by 10, that gets you 300. Then since it is 10 times as much as, you divide 300 by 10 and get 30. 30 is the answer
6 0
3 years ago
Read 2 more answers
Which of the following expressions is equivalent to 3x + 3x + 5 + 5? 3( x + 10) 2(6 x + 10) 3( x + 5) 2(3 x + 5)
aksik [14]
I have the same question 3773 not the
6 0
3 years ago
Read 2 more answers
Other questions:
  • BRAINLIEST if right!<br> Which of the flowing graphs is increasing only when x&lt;0?
    13·2 answers
  • A = {1, 3, 5, 7, 9}
    13·1 answer
  • Find the volume of a right circular cone that has a height of 9.6 m and a base with a diameter of 2.9 m. Round your answer to th
    12·1 answer
  • Jason collects baseball cards. He has 280 cards. Of these, 40% feature players from the New York Yankees baseball team. How many
    6·1 answer
  • Can You Please Help Me ​
    12·2 answers
  • The expression 36+6.2 1ls equal a 4 b 18 c 2 d 13<br> ​
    7·1 answer
  • PLEASE HELP ME !!! SOS
    14·1 answer
  • Matt worked m hours each week. Nate worked n hours each week. The equation n = 4m – 6 describes the relationship between the num
    11·1 answer
  • Find the average rate of change on the interval x=-5 to x=-2 using the function below​
    12·1 answer
  • Which net matches the solid figure shown below?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!