Answer:c-The gravitational effect when spacecraft flies close to the asteriod
Explanation:
Gravitational effect on the spacecraft gives an estimate that how big is the asteroid by experiencing its gravitational pull.
The amount of extra thrust required to maintain the trajectory of the spacecraft during its motion hints at the scientist about the size of the asteroid.
Gravitational pull is directly proportional to the mass of object so greater the mass, greater will be the pull.
Answer:
1.551×10^-8 Ωm
Explanation:
Resistivity of a material is expressed as shown;.
Resistivity = RA/l
R is the resistance of the material
A is the cross sectional area
l is the length of the wire.
Given;
R = 0.0310 Ω
A = πd²/4
A = π(2.05×10^-3)²/4
A = 0.000013204255/4
A = 0.00000330106375
A = 3.30×10^-6m
l = 6.60m
Substituting this values into the formula for calculating resistivity.
rho = 0.0310× 3.30×10^-6/6.60
rho = 1.023×10^-7/6.60
rho = 1.551×10^-8 Ωm
Hence the resistivity of the material is 1.551×10^-8 Ωm
Answer:
time required is 6.72 years
Explanation:
Given data
mass m = 3.20 ✕ 10^7 kg
height h = 2.00 km = 2 × 10^3 m
power p = 2.96 kW =2.96 × 10^3 J/s
to find out
time period
solution
we know work is mass × gravity force × height
and power is work / time
so we say that power = mass gravity force × height / time
now put all value and find time period
power = mass × gravity force × height / time
2.96 × 10^3 = 3.20 ✕ 10^7 × 9.81× 2 × 10^3 / time
time = 62.784 × 10^10 / 2.96 × 10^3
time = 21.21081081 × 10^7 sec
time = 58.91891892 × 10^3 hours
time = 6.72 years
so time required is 6.72 years
<span>Jun 16, 2012 - Given a temperature of 300 Kelvin, what is the approximate temperature in degrees Celsius? –73°C 27°C 327°C 673°C.</span><span>
</span>