The solution to the problem (102 900 ÷ 12) + (170 × 1.27) = 8800.
<u>Explanation</u>:
Step 1.
Evaluate the expressions inside the parentheses (PEMDAS)
102 900 ÷ 12 = 8575
170 × 1.27 = 215.9
In multiplication and division problems, your answer can have no more significant figures than the number with the fewest significant figures.
Thus, the underlined digits are not significant, but we keep them in our calculator to avoid roundoff error.
Step 2.
Do the addition (PEMDAS).
8575 + 215.9 = 8790.9
Everything that you add to an insignificant digit gives an insignificant digit as an answer.
Thus, the underlined digits are not significant.
We must drop them and round up the answer to 8800.
<h3>
Answer:</h3>
2 M
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Unit 0</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<u>Aqueous Solutions</u>
- Molarity = moles of solute / liters of solution
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
36.7 g CaF₂
300 mL H₂O
<u>Step 2: Identify Conversions</u>
Molar Mass of Ca - 40.08 g/mol
Molar Mass of F - 19.00 g/mol
Molar Mass of CaF₂ - 40.08 + 2(19.00) = 78.08 g/mol
1000 mL = 1 L
<u>Step 3: Convert</u>
<em>Solute</em>
- Set up:

- Multiply:

<em>Solution</em>
- Set up:

- Multiply:

<u>Step 4: Find Molarity</u>
- Substitute [M]:

- Divide:

<u>Step 5: Check</u>
<em>Follow sig fig rules and round.</em> <em>We are given 1 sig fig as our lowest.</em>
1.56677 M ≈ 2 M
Here, the three different notation of the p-orbital in different sub-level have to generate
The value of azimuthal quantum number (l) for -p orbital is 1. We know that the magnetic quantum number
depends upon the value of l, which are -l to +l.
Thus for p-orbital the possible magnetic quantum numbers are- -1, 0, +1. So there will be three orbitals for p orbitals, which are designated as
,
and
in space.
The three p-orbital can be distinguish by the quantum numbers as-
For 2p orbitals (principal quantum number is 2)
1) n = 2, l = 1, m = -1
2) n = 2, l = 1, m = 0
3) n = 2, l = 1, m = +1
Thus the notation of different p-orbitals in the sub level are determined.
Answer:
4.35 * 10^-8 M
Explanation:
Since the concentration of the hydronium ion= 2.3 X 10^-7 M
And we know that;
[H3O^+] [OH^-] = 1 * 10^-14
[H3O^+] = concentration of the hydronium ion
[OH^-] = concentration of the hydroxide ion
So;
[OH^-] =1 * 10^-14/[ H3O^+]
But [H3O^+] = 2.3 X 10^-7 M
[OH^-] = 1 * 10^-14/2.3 X 10^-7
[OH^-] = 4.35 * 10^-8 M
The number of valence electrons in
will be 26.
The atom's outermost inhabited shell is where valence electrons are found. They are significant because they have a major impact on how an atom's chemical characteristics are determined.
The number of valence electron in P in 5 and number of valence electron in Cl is 7. There are one molecule of P and three molecule of Cl in
molecule. By adding all valence electrons , the total number of valance electrons will be 26.
The Lewis structure of
is shown as:
Therefore, the number of valence electrons in
will be 26.
To know more about valence electrons
brainly.com/question/13993867
#SPJ4