Answer: The cone can hold 18.84 cubic inches of ice cream.
Step-by-step explanation:
Hi, to answer this question we have to find the volume of a cone, using only the height (h) and the radius(r) values.
Volume of a cone (V) = 1/3 π r² h
Replacing with the values given:
V = 1/3 (3.14) (3)² 2
Solving:
V = 1/3 (3.14) (9) 2
V = 18.84 cubic inches
In conclusion, the cone can hold 18.84 cubic inches of ice cream.
6.
![1 \frac{1}{2} = \frac{6}{4}](https://tex.z-dn.net/?f=1%20%5Cfrac%7B1%7D%7B2%7D%20%3D%20%5Cfrac%7B6%7D%7B4%7D%20)
since
![\frac{1}{4} = 4](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B4%7D%20%3D%204%20)
feet. Then 6*4=24 So the answer is C
7. 1200 m/8 cm = C. 1 cm = 150 m
8. A. Since 1 in = 3 feet then 6 inches = 18 feet (6*3=18) and 4 inches = 12 feet (4*3=12) so the dimensions of her room are 16'x12'.
B. A=lxw so 16*12= 216
![m^{2}](https://tex.z-dn.net/?f=%20%20m%5E%7B2%7D%20)
Hope that helps
Answer:
The length of side b is 179 ft
Step-by-step explanation:
Given triangle ABC in which
∠A = 33°, ∠B = 63°, c=200
we have to find the length of b
In ΔABC, by angle sum property of triangle
∠A+∠B+∠C=180°
33°+63°+∠C=180°
∠C=180°-33°-63°=84°
By sine law,
![\frac{\sin \angle A}{a}=\frac{\sin \angle B}{b}=\frac{\sin \angle C}{c}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csin%20%5Cangle%20A%7D%7Ba%7D%3D%5Cfrac%7B%5Csin%20%5Cangle%20B%7D%7Bb%7D%3D%5Cfrac%7B%5Csin%20%5Cangle%20C%7D%7Bc%7D)
![\frac{\sin \angle B}{b}=\frac{\sin \angle C}{c}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csin%20%5Cangle%20B%7D%7Bb%7D%3D%5Cfrac%7B%5Csin%20%5Cangle%20C%7D%7Bc%7D)
![\frac{\sin 63^{\circ}}{b}=\frac{\sin 84^{\circ}}{200}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csin%2063%5E%7B%5Ccirc%7D%7D%7Bb%7D%3D%5Cfrac%7B%5Csin%2084%5E%7B%5Ccirc%7D%7D%7B200%7D)
![b=200\times \frac{\sin 63^{\circ}}{\sin 84^{\circ}}=179.182887\sim 179 ft](https://tex.z-dn.net/?f=b%3D200%5Ctimes%20%5Cfrac%7B%5Csin%2063%5E%7B%5Ccirc%7D%7D%7B%5Csin%2084%5E%7B%5Ccirc%7D%7D%3D179.182887%5Csim%20179%20ft)
The length of side b is 179 ft
Option C is correct.
Coin: 50%; 1/2 chance to get heads
dice: 17%; 1/6 chance to get 2