Answer:
M=47.99988
Step-by-step explanation:
M=1.33333(16+20)
=1.33333(36)
=47.99988
Explanation:
1. Identify the different constellations of variables. Here there are three:
2. Combine coefficients of each of the different variable constellations:
(8.1 -2.8)b +(6.7 +0.9)a +(2.5 +7)
5.3b +7.8a +9.5
3. Perform any other operations that might be required depending on the sort of equivalent wanted. For example, one could write ...
5.3(b +(78/53)a) +9.5 . . . . . . . shows the weight of a relative to b
Answer:
<em>Answer</em><em> </em><em>is option</em><em> </em><em>c</em>
Step-by-step explanation:

x=3 and y=-6
<em>HAVE</em><em> </em><em>A NICE DAY</em><em>!</em>
<em>THANKS FOR GIVING ME THE OPPORTUNITY</em><em> </em><em>TO ANSWER YOUR QUESTION</em><em>. </em>
Answer:
an unknown point? like 0,7 or 0,5 or 0,1 or 0,0 or 0,anything?
Step-by-step explanation:
Given a complex number in the form:
![z= \rho [\cos \theta + i \sin \theta]](https://tex.z-dn.net/?f=z%3D%20%5Crho%20%5B%5Ccos%20%5Ctheta%20%2B%20i%20%5Csin%20%5Ctheta%5D)
The nth-power of this number,

, can be calculated as follows:
- the modulus of

is equal to the nth-power of the modulus of z, while the angle of

is equal to n multiplied the angle of z, so:
![z^n = \rho^n [\cos n\theta + i \sin n\theta ]](https://tex.z-dn.net/?f=z%5En%20%3D%20%5Crho%5En%20%5B%5Ccos%20n%5Ctheta%20%2B%20i%20%5Csin%20n%5Ctheta%20%5D)
In our case, n=3, so

is equal to
![z^3 = \rho^3 [\cos 3 \theta + i \sin 3 \theta ] = (5^3) [\cos (3 \cdot 330^{\circ}) + i \sin (3 \cdot 330^{\circ}) ]](https://tex.z-dn.net/?f=z%5E3%20%3D%20%5Crho%5E3%20%5B%5Ccos%203%20%5Ctheta%20%2B%20i%20%5Csin%203%20%5Ctheta%20%5D%20%3D%20%285%5E3%29%20%5B%5Ccos%20%283%20%5Ccdot%20330%5E%7B%5Ccirc%7D%29%20%2B%20i%20%5Csin%20%283%20%5Ccdot%20330%5E%7B%5Ccirc%7D%29%20%5D)
(1)
And since

and both sine and cosine are periodic in

, (1) becomes