Depending on the reaction, we could monitor the progress towards equilibrium by observing the concentration of the reactant and the product are equal with time.
<h3>What is equilibrium?</h3>
Equilibrium is a stage of reaction in which the rate of forwarding reaction is equal to the rate of backward reaction and equilibrium is stable at the reversible state of mode.
The concentration of reactant and product must also be equal or the same as the time then only it can be an equilibrium reaction.
Therefore equilibrium depends on the reaction, the concentration of the reactant and the product are equal with time.
Learn more about equilibrium, here:
brainly.com/question/13463225
#SPJ4
Answer:
M of Al=33.09g or 0.0331kg
Explanation:
Heat Energy= specific heat*mass*change in temperature
H=M*C*T
make M subject of the formula
M=H/CT
M=685J/0.90J/g°C*(45°C-22°C)
M=685J/0.90J/g°C*23°C
M=685J/20.7J/g
M=33.09g or 0.0331kg
Answer: an increase in the concentration of
in aqueous solutions and is capable of donating one or more 
Explanation:
According to Arrhenius concept, a base is defined as a substance which donates hydroxide ions
when dissolved in water and an acid is defined as a substance which donates hydrogen ions
in water.
According to the Bronsted Lowry conjugate acid-base theory, an acid is defined as a substance which donates protons and a base is defined as a substance which accepts protons.
According to the Lewis concept, an acid is defined as a substance that accepts electron pairs and base is defined as a substance which donates electron pairs.
Thus According to the Arrhenius concept, an acid is a substance that causes an increase in the concentration of
in aqueous solutions and is capable of donating one or more 
As the temperature of a liquid increases, its viscosity decreases.
Answer:
Formula: Na2S2O3
we get solubility.
Divide the mass of the compound by the mass of the solvent and then multiply by 100 g to calculate the solubility in g/100g .
Solution given:
mass of sodium thiosulphate [m1]=25.5g
mass of water [m2]=40g
at temperature [t]=25°C
we have
<u>solubility in g/dm^3</u> :
- =

- =63.75g /litre=63.75g/dm³
<u>solubility in g/dm^3 :63.75g/dm³</u>
<u>n</u><u>o</u><u>w</u>
solubility of the solute in mol/dm^3=:63.75g/dm³/178=0.4 mol/dm³