I honestly don't see anything above. But 'H' on a weather map usually shows the center of a high-pressure system.
Answer:
The coefficient of static friction between the car and the track
u=0.572
Explanation:
We don't know the mass of the car or any other information so the acceleration is the reason to solve the friction coefficient
∑
As we know

Also the center ward direction forces



But now vt relation with the tangential acceleration

replacing


So magnitude of the force can get by

Get the factor to simplify


Solve to u'


To solve this problem it is necessary to apply the kinematic equations of movement description, specifically those that allow us to find speed and acceleration as a function of distance and not time.
Mathematically we have to

Where,
Final velocity and Initial velocity
a = Acceleration
x = Displacement
From the description given there is no final speed (since it reaches the maximum point) but there is a required initial speed that is contingent on traveling a certain distance under the effects of gravity


Therefore the speed which must a rock thrown straight up is 14*10^2m/s to reach the edge of our atmosphere.
The displacement and gravity traveled are the same, therefore the final speed will be the same but in the opposite vector direction (towards the earth), that is 
Answer:
a. 475.14 Hz
b. 1959 Hz
c. 2341.53 Hz , 3053.34 Hz
Explanation:

a. smallest use the capacitive 4.2 uF + 6.0 uF = 10.2uF replacing:


b. second smallest use the capacitive 6 uF so:


c. second largest and largest oscillation first combination so:
Use 4.2 uF


And finally largest oscillation cap in serie so:



