Answer:
charges of the beads is 1.173 ×
C
Explanation:
given data
mass = 3.8589 g = 0.003859 kg
spring length = 5 cm = 0.05 m
extend spring x = 1.5747 cm = 0.15747 m
spring's extension = 0.0116 m
to find out
charges of the beads
solution
we know that force is
force = mass × g
force = 0.003859 × 9.8
force = 0.03782 N
so we know force for mass
force = -kx
so k = force / x
put here force and x value
k = -0.03782 / 0.1575
k = -0.24 N/m
and
force for spring's extension
force = -kx
force = -0.24 ( 0.0116) = 0.002784 N
so here
total length L = 0.05 + 0.0116 = 0.0616
so charges of the beads = force × L² / ke
charges of the beads = 0.002784 × (0.0616)² / (9 ×
)
so charges of the beads = 1.173 ×
C
Answer:
The kinetic energy is: 50[J]
Explanation:
The ball is having a potential energy of 100 [J], therefore
PE = [J]
The elevation is 10 [m], and at this point the ball is having only potential energy, the kinetic energy is zero.
![E_{p} =m*g*h\\where:\\g= gravity[m/s^{2} ]\\m = mass [kg]\\m= \frac{E_{p} }{g*h}\\ m= \frac{100}{9.81*10}\\\\m= 1.01[kg]\\\\](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3Dm%2Ag%2Ah%5C%5Cwhere%3A%5C%5Cg%3D%20gravity%5Bm%2Fs%5E%7B2%7D%20%5D%5C%5Cm%20%3D%20mass%20%5Bkg%5D%5C%5Cm%3D%20%5Cfrac%7BE_%7Bp%7D%20%7D%7Bg%2Ah%7D%5C%5C%20m%3D%20%5Cfrac%7B100%7D%7B9.81%2A10%7D%5C%5C%5C%5Cm%3D%201.01%5Bkg%5D%5C%5C%5C%5C)
In the moment when the ball starts to fall, it will lose potential energy and the potential energy will be transforme in kinetic energy.
When the elevation is 5 [m], we have a potential energy of
![P_{e} =m*g*h\\P_{e} =1.01*9.81*5\\\\P_{e} = 50 [J]\\](https://tex.z-dn.net/?f=P_%7Be%7D%20%3Dm%2Ag%2Ah%5C%5CP_%7Be%7D%20%3D1.01%2A9.81%2A5%5C%5C%5C%5CP_%7Be%7D%20%3D%2050%20%5BJ%5D%5C%5C)
This energy is equal to the kinetic energy, therefore
Ke= 50 [J]
The element is iridium and it has 77 electrons
Answer:
The smallest separation distance between the speakers is 0.71 m.
Explanation:
Given that,
Two speakers, one directly behind the other, are each generating a 240-Hz sound wave, f = 240 Hz
Let the speed of sound is 343 m/s in air. The speed of sound is given by the formula as :

To produce destructive interference at a listener standing in front of them,

So, the smallest separation distance between the speakers is 0.71 m. Hence, this is the required solution.