The answer is D. 32 m.
The simple equation that connects speed (v), time (t), and distance (d) can be expressed as:

⇒

It is given:

t = 10 s
d = ?
So:
Answer:
The work done on the suitcase is, W = 1691 J
Explanation:
Given data,
The force on the suitcase is, F = 89 N
The distance Russell dragged the suitcase, S = 19 m
The work done on the suitcase by Russell is equal to the work done on the suitcase to overcome the friction
The work done on the suitcase by Russell is given by the formula
W = F · S
Substituting the given values,
W = 89 N x 19 m
W = 1691 J
Hence, the work done on the suitcase is, W = 1691 J
Answer : The correct option is, (c) 
Explanation :
First we have to calculate the energy or heat.
Formula used :

where,
E = energy (in joules)
V = voltage (in volt)
I = current (in ampere)
t = time (in seconds)
Now put all the given values in the above formula, we get:


Now we have to calculate the heat capacity of the calorimeter.
Formula used :

where,
C = heat capacity of the calorimeter
= initial temperature = 
= final temperature = 
Now put all the given values in this formula, we get:


Therefore, the heat capacity of the calorimeter is, 
Answer:
0.363999909622
Explanation:
F = Force
m = Mass = 15.6 g
C = Drag coefficient
ρ = Density of air = 1.21 kg/m³
A = Surface area = 
v = Terminal velocity = 
s = Displacement = 150 m

Force is given by
F = ma

The drag coefficient is 0.363999909622 (ignoring negative sign)
Answer:
please give me brainlist and follow
Explanation:
The measuring sensitivity of liquid-in-glass thermometers increases with the amount of liquid in the thermometer. The more liquid there is, the more liquid will expand and rise in the glass tube. For this reason, liquid thermometers have a reservoir to increase the amount of liquid in the thermometer.