The triangle QPR having inscribed triangle STU will allow the artisan to divided his glass piece into four equal triangular pieces.
In order to divide an equilateral triangle into four equal triangular glass pieces, the artisan must;
- Take S as the mid-point on PA, T as the mid-point on PR, and U as the mid-point on QR. Thus, S, T, and U are the three mid-points on each side of the equilateral triangle QPR.
- Now, by joining these mid-points S, T, and U, four equal triangles are made(as shown in the figure).
Since the triangle is equilateral,
PQ = QR = RP
Mid-point divides the lines into equal parts. So,
PS = SQ = QU = UR = RT = TP
Thus, it is proved that
ΔPST = ΔSTU = ΔTUR = ΔQSU
Learn more about 'Equilateral Triangle' here:
brainly.com/question/2855144