Answer:
When boiling water is poured into a thick tumbler its inner surface expands. However, due to low thermal conductivity of glass, the expansion of outer surface of the tumbler is quite small. Due to uneven expansion of the outer and inner surfaces, the tumbler breaks.
Explanation:
hope it helps please mark me as a brainliest please
Explanation:
The unit of work done is in Joules
Work done is a physical quantity that is defined as the force applied to move a body through a particular distance.
Work is only done when the force applied moves a body through a distance.
Work done = Force x distance
The maximum work is done when the force is parallel to the distance direction.
The minimum work is done when the force is at an angle of 90° to the distance direction.
So to solve this problem;
multiply the force applied by Zack and distance through which the bull was pulled.
Answer:
Democritus had no scientific instruments to extend the reach of his senses, so all of his experiments were just 'mind experiments', but because Democritus was a philosopher, he thought more into depth about why we humans are alive which led to the atomic theory.
Explanation:
Objects in free fall, disregarding terminal velocity, accelerate at 9.8(m/s)/s. so for every second it was falling, it gained 9.8m/s in speed. 9.8 * 10 = 98m/s
Kepler's first law - sometimes referred to as the law of ellipses - explains that planets are orbiting the sun in a path described as an ellipse. An ellipse can easily be constructed using a pencil, two tacks, a string, a sheet of paper and a piece of cardboard. Tack the sheet of paper to the cardboard using the two tacks. Then tie the string into a loop and wrap the loop around the two tacks. Take your pencil and pull the string until the pencil and two tacks make a triangle (see diagram at the right). Then begin to trace out a path with the pencil, keeping the string wrapped tightly around the tacks. The resulting shape will be an ellipse. An ellipse is a special curve in which the sum of the distances from every point on the curve to two other points is a constant. The two other points (represented here by the tack locations) are known as the foci of the ellipse. The closer together that these points are, the more closely that the ellipse resembles the shape of a circle. In fact, a circle is the special case of an ellipse in which the two foci are at the same location. Kepler's first law is rather simple - all planets orbit the sun in a path that resembles an ellipse, with the sun being located at one of the foci of that ellipse.