The answer is True.
Dictionary definition of <span>malleable.
</span>
(of a metal or other material) able to be hammered or pressed permanently out of shape without breaking or cracking.
Magnitude of acceleration = (change in speed) / (time for the change) .
Change in speed = (ending speed) - (starting speed)
= zero - (43 m/s)
= -43 m/s .
Magnitude of acceleration = (-43 m/sec) / (0.28 sec)
= (-43 / 0.28) (m/sec) / sec
= 153.57... m/s²
= 1.5... x 10² m/s² .
Answer:
t = 3.516 s
Explanation:
The most useful kinematic formula would be the velocity of the motorcylce as a function of time, which is:
![v(t) = v_0 +at](https://tex.z-dn.net/?f=v%28t%29%20%3D%20v_0%20%2Bat)
Where v_0 is the initial velocity and a is the acceleration. However the problem states that the motorcyle start at rest therefore v_0 = 0
If we want to know the time it takes to achieve that speed, we first need to convert units from km/h to m/s.
This can be done knowing that
1 km = 1000 m
1 h = 3600 s
Therefore
1 km/h = (1000/3600) m/s = 0.2777... m/s
100 km/h = 27.777... m/s
Now we are looking for the time t, for which v(t) = 27.77 m/s. That is:
27.777 m/s = 7.9 m/s^2 t
Solving for t
t = (27.7777 / 7.9) s = 3.516 s
Without the ability to measure, it would be difficult for scientists to conduct experiments or form theories. Not only is measurement important in science and the chemical industry, it is also essential in farming, engineering, construction, manufacturing, commerce, and numerous other occupations and activities.
The force applied to the cannonball and cannon is equal. The explosion inside the cannon will generate a pressure which will turn into a force on both cannonball and cannon. The cannon being heavier and fixed to the ground will move a bit, but the cannonball will be thrown away, fired.