According to Einstein the energy of photon is given by the equation,
E = hν = h . c/λ
where h is Planck's constant, c is the speed of light, ν is the frequency of light and λ is the wavelength of light.
Given, wavelength = 608 nm = 608 x 10⁻⁹ m
Conversion factor: 1 nm = 10⁻⁹ m
c = 3 x 10⁸ m/s
h = 6.626× 10⁻³⁴ J.s
Substituting the data into the equation we get,
E = h . c/λ
E = 6.626× 10⁻³⁴ J.s x (3 x 10⁸ m/s) / 608 x 10⁻⁹ m
E = 3.27 x 10⁻¹⁹J
3.27 x 10⁻¹⁹J energy must be added to strontium to get it to produce 608 nm wavelength.
A gas has more free molecules, and it is air, not a tangible substance. Hope it helps! :)
Do you mean addiction? Genetics can make people more vulnerable to addiction, but I’m not sure what it means to be venerable to addition lol
Answer:
C. Lithium is most easily oxidized of the metals listed on the activity series and therefore it will most easily give electrons to metal cations
Explanation:
"Lithium" is a type of alkali metal that has a "single valence electron." Since it is a reactive element, it easily gives up an electron when it is combined with other elements. Such giving up of electron is meant to create compounds or bonds.
Among the common metals listed, "lithium" is the most easily oxidized. This means that it donates its electrons immediately. Such combination makes it exist as a<em> "cation"</em> or <em>"positively-charged."</em>
So, this explains the answer.
The ideal gas law is PV= nRT.
First you need to manipulate the equation to splice for volume,
Which will be V= nRT/P
Now you need to input the numbers for each variable. Make sure to remember what the value R equals and it’s units. R= 0.08206 L•atm/n•K