Answer:
It is equal to the number of moles of acid that reacted. When Oxalic acid is your limiting reactant it is the # of moles of oxalic acid used. When NaOH is your limiting reactant it is equal to the number of moles of NaOH used.
Answer:
6⅔ shifts
Explanation:
From the question given:
A shift = 4 hours
Pay = $8.25 per hour
Next, we shall determine the number of hours that will result in a pay of $220. This can be obtained as follow:
$8.25 = 1 hour
Therefore,
$220 = $220 × 1 hour / $8.25
$220 = 220/8.25 hours.
$220 = 80/3 hours
$220 = 26⅔ hours
Therefore, it will take 26⅔ hours to receive a pay of $220.
Finally, we shall determine the number of shifts in 26⅔ hours. This can be obtained as follow:
4 hours = 1 shift
Therefore,
26⅔ hours = 26⅔ ÷ 4
26⅔ hours = 80/3 × 1/4
26⅔ hours = 80/12
26⅔ hours = 20/3
26⅔ hours = 6⅔ shifts
Therefore, she will work 6⅔ shifts in order to receive a pay of $220
Answer:
The final temperature was 612 °C
Explanation:
Charles's law relates the volume and temperature of a certain amount of ideal gas, maintained at a constant pressure, using a constant of direct proportionality. In this law, Charles says that at constant pressure, as the temperature increases, the volume of the gas increases and as the temperature decreases, the volume of the gas decreases. That is, Charles's law is a law that says that when the amount of gas and pressure are kept constant, the ratio between volume and temperature will always have the same value:

When you want to study two different states, an initial and a final one of a gas and evaluate the change in volume as a function of temperature or vice versa, you can use the expression:

In this case:
- V1= 5.76 L
- T1= 22 °C= 295 °K (Being 0°C=273°K)
- V2=17.28 L
- T2=?
Replacing:

Solving:

T2= 885 °K = 612 °C
<u><em>The final temperature was 612 °C</em></u>