The critical point is (-30,0) I think
Answer:
<u>ALTERNATIVE 1</u>
a. Find the profit function in terms of x.
P(x) = R(x) - C(x)
P(x) = (-60x² + 275x) - (50000 + 30x)
P(x) = -60x² + 245x - 50000
b. Find the marginal cost as a function of x.
C(x) = 50000 + 30x
C'(x) = 0 + 30 = 30
c. Find the revenue function in terms of x.
R(x) = x · p
R(x) = x · (275 - 60x)
R(x) = -60x² + 275x
d. Find the marginal revenue function in terms of x.
R'(x) = (-60 · 2x) + 275
R'(x) = -120x + 275
The answers do not make a lot of sense, specially the profit and marginal revenue functions. I believe that the question was not copied correctly and the price function should be p = 275 - x/60
<u>ALTERNATIVE 2</u>
a. Find the profit function in terms of x.
P(x) = R(x) - C(x)
P(x) = (-x²/60 + 275x) - (50000 + 30x)
P(x) = -x²/60 + 245x - 50000
b. Find the marginal cost as a function of x.
C(x) = 50000 + 30x
C'(x) = 0 + 30 = 30
c. Find the revenue function in terms of x.
R(x) = x · p
R(x) = x · (275 - x/60)
R(x) = -x²/60 + 275x
d. Find the marginal revenue function in terms of x.
R(x) = -x²/60 + 275x
R'(x) = -x/30 + 275
Starting amount = g
Throughout the day 200 pounds is added and 1400 pounds is removed ( 700 x 2 = 1400)
Final weight is 1,100 pounds
g + 200 - 1400 = 1100
Simplify:
g - 1200 = 1100
Add 1200 to both sides:
g = 2300 pounds
Answer:
B.(X - 6)^2 = 14 TNX ME LATER
Answer:
D. 14x - 4
Step-by-step explanation:
P = 2(L + W)
P = 2(4x + 5 + 3x - 7)
P = 2(7x - 2)
P = 14x - 4