1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Troyanec [42]
3 years ago
11

Please help ASAP!!

Engineering
1 answer:
Tasya [4]3 years ago
8 0
I believe a Closed loop
You might be interested in
Sea B = 5.00 m a 60.0°. Sea C que tiene la misma magnitud que A y un ángulo de dirección mayor que el de A en 25.0°. Sea A ⦁ B =
uranmaximum [27]

Answer:

\| \vec A \| = 6.163\,m

Explanation:

Sean A, B y C vectores coplanares tal que:

\vec A = (\| \vec A \|\cdot \cos \theta_{A},\| \vec A \|\cdot \sin \theta_{A}), \vec B = (\| \vec B \|\cdot \cos \theta_{B},\| \vec B \|\cdot \sin \theta_{B}) y \vec C = (\| \vec C \|\cdot \cos \theta_{C},\| \vec C \|\cdot \sin \theta_{C})

Donde \| \vec A \|, \| \vec B \| y \| \vec C \| son las normas o magnitudes respectivas de los vectores A, B y C, mientras que \theta_{A}, \theta_{B} y \theta_{C} son las direcciones respectivas de aquellos vectores, medidas en grados sexagesimales.

Por definición de producto escalar, se encuentra que:

\vec A \,\bullet\, \vec B = \|\vec A \| \| \vec B \| \cos \theta_{B}\cdot \cos \theta_{A} + \|\vec A \| \| \vec B \| \sin \theta_{B}\cdot \sin \theta_{A}

\vec B \,\bullet\, \vec C = \|\vec B \| \| \vec C \| \cos \theta_{B}\cdot \cos \theta_{C} + \|\vec B \| \| \vec C \| \sin \theta_{B}\cdot \sin \theta_{C}

Asimismo, se sabe que \| \vec B \| = 5\,m, \theta_{B} = 60^{\circ}, \vec A \,\bullet \,\vec B = 30\,m^{2}, \vec B\, \bullet\, \vec C = 35\,m^{2}, \|\vec A \| = \| \vec C \| y \theta_{C} = \theta_{A} + 25^{\circ}. Entonces, las ecuaciones quedan simplificadas como siguen:

30\,m^{2} = 5\|\vec A \| \cdot (\cos 60^{\circ}\cdot \cos \theta_{A} + \sin 60^{\circ}\cdot \sin \theta_{A})

35\,m^{2} = 5\|\vec A \| \cdot [\cos 60^{\circ}\cdot \cos (\theta_{A}+25^{\circ}) + \sin 60^{\circ}\cdot \sin (\theta_{A}+25^{\circ})]

Es decir,

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot [2.5\cdot \cos (\theta_{A}+25^{\circ})+4.330\cdot \sin (\theta_{A}+25^{\circ}})]

Luego, se aplica las siguientes identidades trigonométricas para sumas de ángulos:

\cos (\theta_{A}+25^{\circ}) = \cos \theta_{A}\cdot \cos 25^{\circ} - \sin \theta_{A}\cdot \sin 25^{\circ}

\sin (\theta_{A}+25^{\circ}) = \sin \theta_{A}\cdot \cos 25^{\circ} + \cos \theta_{A} \cdot \sin 25^{\circ}

Es decir,

\cos (\theta_{A}+25^{\circ}) = 0.906\cdot \cos \theta_{A} - 0.423 \cdot \sin \theta_{A}

\sin (\theta_{A}+25^{\circ}) = 0.906\cdot \sin \theta_{A} + 0.423 \cdot \cos \theta_{A}

Las nuevas expresiones son las siguientes:

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot [2.5\cdot (0.906\cdot \cos \theta_{A} - 0.423 \cdot \sin \theta_{A})+4.330\cdot (0.906\cdot \sin \theta_{A} + 0.423 \cdot \cos \theta_{A})]

Ahora se simplifican las expresiones, se elimina la norma de \vec A y se desarrolla y simplifica la ecuación resultante:

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot (4.097\cdot \cos \theta_{A} +2.865\cdot \sin \theta_{A})

\frac{30\,m^{2}}{2.5\cdot \cos \theta_{A}+ 4.330\cdot \sin \theta_{A}} = \frac{35\,m^{2}}{4.097\cdot \cos \theta_{A} + 2.865\cdot \sin \theta_{A}}

30\cdot (4.097\cdot \cos \theta_{A} + 2.865\cdot \sin \theta_{A}) = 35\cdot (2.5\cdot \cos \theta_{A}+4.330\cdot \sin \theta_{A})

122.91\cdot \cos \theta_{A} + 85.95\cdot \sin \theta_{A} = 87.5\cdot \cos \theta_{A} + 151.55\cdot \sin \theta_{A}

35.41\cdot \cos \theta_{A} = 65.6\cdot \sin \theta_{A}

\tan \theta_{A} = \frac{35.41}{65.6}

\tan \theta_{A} = 0.540

Ahora se determina el ángulo de \vec A:

\theta_{A} = \tan^{-1} \left(0.540\right)

La función tangente es positiva en el primer y tercer cuadrantes y tiene un periodicidad de 180 grados, entonces existen al menos dos soluciones del ángulo citado:

\theta_{A, 1} \approx 28.369^{\circ} y \theta_{A, 2} \approx 208.369^{\circ}

Ahora, la magnitud de \vec A es:

\| \vec A \| = \frac{35\,m^{2}}{4.097\cdot \cos 28.369^{\circ} + 2.865\cdot \sin 28.369^{\circ}}

\| \vec A \| = 6.163\,m

8 0
4 years ago
What is civil engineering​
kkurt [141]

Answer:

engineering that works on building structures.

Explanation:

7 0
4 years ago
What is an automotive system in relation to a vehicle’s structure and operation?
Julli [10]
Answer:

Automotive System. A group of related parts that perform a specific function. Body and Chassis System. Body, frame, suspension, steering, braking which support, stop and enclose the parts of the car.
7 0
1 year ago
Read 2 more answers
In successive an object moves from start position, then moves 1ft, 4ft and 8ft. This is an example of a. non-uniform motion b. u
Nikolay [14]

Answer:Non-uniform motion

Explanation:

This is an example of Non-uniform motion because unequal distance traveled by an object in equal interval of time is termed as Non-Uniform motion and here also the distance traveled by object is 1 ft ,4 ft and 8 ft which is different from each other.

In Uniform motion distance traveled is equal in equal interval of time .

6 0
3 years ago
A metal plate of 400 mm in length, 200mm in width and 30 mm in depth is to be machined by orthogonal cutting using a tool of wid
dmitriy555 [2]

Complete Question:

A metal plate of 400 mm in length, 200mm in width and 30 mm in depth is to be machined by orthogonal cutting using a tool of width 5mm and a depth of cut of 0.5 mm. Estimate the minimum time required to reduce the depth of the plate by 20 mm if the tool moves at 400 mm per second.

Answer:

T_{min} = 26 mins 40 secs

Explanation:

Reduction in depth, Δd = 20 mm

Depth of cut, d_c = 0.5 mm

Number of passes necessary for this reduction, n = \frac{\triangle d}{d_c}

n = 20/0.5

n = 40 passes

Tool width, w = 5 mm

Width of metal plate, W = 200 mm

For a reduction in the depth per pass, tool will travel W/w = 200/5 = 40 times

Speed of tool, v = 100 mm/s

Time/pass = \frac{40*400}{400} \\Time/pass = 40 sec

minimum time required to reduce the depth of the plate by 20 mm:

T_{min} = number of passes * Time/pass

T_{min} = n * Time/pass

T_{min} = 40 * 40

T_{min} =  1600 = 26 mins 40 secs

3 0
4 years ago
Read 2 more answers
Other questions:
  • 5. Bar stock of initial diameter = 90 mm is drawn with a draft = 10 mm. The draw die has an entrance angle = 18, and the coeffi
    9·1 answer
  • The difference between absolute viscosity and kinematic viscosity is a. the absolute viscosity is the mass density divided by th
    10·1 answer
  • The motor draws in the cord at B with an acceleration of aB = 2 m/s2 . When sA = 1.5 m , vB = 6.2 m/s .
    9·1 answer
  • A hole drilled into a manufactured part is specified to have a diameter of 1.50 cm. Ten parts are sampled from a production run.
    10·1 answer
  • Show that a chirped Gaussian pulse is compressed initially inside a single-mode fiber when ftC < 0. Derive expressions for th
    12·1 answer
  • Please help this is due today!!!!!
    13·1 answer
  • What is the relationship between compressor work and COPR?
    14·1 answer
  • Engineering Specificaitons is ...
    9·1 answer
  • What is the number for account receivable?​
    10·2 answers
  • As part of its commitment to sustainability, a company is looking for a way to track the source of purchased goods and how they
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!