Answer:
stress = 50MPa
Explanation:
given data:
Length of strain guage is 5mm
displacement
stress due to displacement in structural steel can be determined by using following relation


where E is young's modulus of elasticity
E for steel is 200 GPa

stress = 50MPa
Answer:
kk
Explanation:
dkdndidodd ndidkjeeiwonejeeidmdnddkdidfmndd
Answer: The engineering design process emphasizes open-ended problem solving and encourages students to learn from failure. This process nurtures students abilities to create innovative solutions to challenges in any subject! In addition to their involvement in design and development, many engineers work in testing, production, or maintenance. These engineers supervise production in factories, determine the causes of a component's failure, and test manufactured products to maintain quality.
Explanation:
Answer:
Explanation:
Given data in question
mean stress = 50 MPa
amplitude stress = 225 MPa
to find out
maximum stress, stress ratio, magnitude of the stress range.
solution
we will find first maximum stress and minimum stress
and stress will be sum of (maximum +minimum stress) / 2
so for stress 50 MPa and 225 MPa
=
+
/ 2
50 =
+
/ 2 ...........1
and
225 =
+
/ 2 ...........2
from eqution 1 and 2 we get maximum and minimum stress
= 275 MPa ............3
and
= -175 MPa ............4
In 2nd part we stress ratio is will compute by ratio of equation 3 and 4
we get ratio =
/
ratio = -175 / 227
ratio = -0.64
now in 3rd part magnitude will calculate by subtracting maximum stress - minimum stress i.e.
magnitude =
-
magnitude = 275 - (-175) = 450 MPa
Answer:
q=39.15 W/m²
Explanation:
We know that
Thermal resistance due to conductivity given as
R=L/KA
Thermal resistance due to heat transfer coefficient given as
R=1/hA
Total thermal resistance

Now by putting the values


We know that
Q=ΔT/R


So heat transfer per unit volume is 39.15 W/m²
q=39.15 W/m²