That is too hard but u got that cuz i believe in you!!!
Answer:
0.0406 m/s
Explanation:
Given:
Diameter of the tube, D = 25 mm = 0.025 m
cross-sectional area of the tube = (π/4)D² = (π/4)(0.025)² = 4.9 × 10⁻⁴ m²
Mass flow rate = 0.01 kg/s
Now,
the mass flow rate is given as:
mass flow rate = ρAV
where,
ρ is the density of the water = 1000 kg/m³
A is the area of cross-section of the pipe
V is the average velocity through the pipe
thus,
0.01 = 1000 × 4.9 × 10⁻⁴ × V
or
V = 0.0203 m/s
also,
Reynold's number, Re = 
where,
ν is the kinematic viscosity of the water = 0.833 × 10⁻⁶ m²/s
thus,
Re = 
or
Re = 611.39 < 2000
thus,
the flow is laminar
hence,
the maximum velocity = 2 × average velocity = 2 × 0.0203 m/s
or
maximum velocity = 0.0406 m/s
Answer:
Gravitational force (pulled downward by the Earth)
Normal force (pushed upward by the ground)
Applied force (pushed by the person)
Friction force (pulled opposite the direction of motion by the roughness of the ground)
Answer:
low on fuel or if it's red
Explanation:
common sense to be honest :/
Answer:
The axis of motion that is parallel to the spindle axis is always the Z-axis.
Explanation:
Z-Axis Which axis is which depends on the orientation of the spindle.
If the spindle is vertical (Figure 2.1), the Z-axis is vertical. Either the quill or the knee of a vertical spindle mill will move when a Z-axis command is executed.
This is the best answer I could give you, maybe you could show us a pic of the question so we see all the possible choices?