Answer:
-<u>One Equation</u>: is set equal to a variable
Example:
y = 2x + 1
x + 3y = -12
You already have y, plug it back into x + 3y = -12
x + 3(2x + 1) = -12
x + 6x + 3 = -12
7x + 3 = -12
(Subtract 3 from each side)
7x = -15
(Divide by 7)
x = - 2.14
-<u>No Equation</u>: is set equal to a variable
Example:
2x + y = 10
4× + 2y = -3
Subtract 2x from each side of 2x + y = 10, you should get y= -2x + 10. Now that you have found y, substitute y into 4x+ 2y = -3.
4x + 2(-2x + 10) = -3
4x + -4x + 20 = -3
(Subtract 20 from each side)
4x + -4x = -23
(Add 4x and -4x)
0 = -23
No Solution
<u>-Both</u><u> </u><u>Equations</u>: are set equal to a variable
Example:
y = x + 5
y = -x + 3
(you already have y so plug it into the other equation to solve for x)
-x + 3 = x + 5
(Add -x on both sides)
3 = 2x + 5
(subtract 5 from both sides)
-2 = 2x
(Divide by 2 on each side)
x = -1
I hope this helped!
Answer:
The area of the rectanglw is 26
Answer:
D
Step-by-step explanation:I hope this helps
Subtract 1111 from both sides
5{e}^{{4}^{x}}=22-115e4x=22−11
Simplify 22-1122−11 to 1111
5{e}^{{4}^{x}}=115e4x=11
Divide both sides by 55
{e}^{{4}^{x}}=\frac{11}{5}e4x=511
Use Definition of Natural Logarithm: {e}^{y}=xey=x if and only if \ln{x}=ylnx=y
{4}^{x}=\ln{\frac{11}{5}}4x=ln511
: {b}^{a}=xba=x if and only if log_b(x)=alogb(x)=a
x=\log_{4}{\ln{\frac{11}{5}}}x=log4ln511
Use Change of Base Rule: \log_{b}{x}=\frac{\log_{a}{x}}{\log_{a}{b}}logbx=logablogax
x=\frac{\log{\ln{\frac{11}{5}}}}{\log{4}}x=log4logln511
Use Power Rule: \log_{b}{{x}^{c}}=c\log_{b}{x}logbxc=clogbx
\log{4}log4 -> \log{{2}^{2}}log22 -> 2\log{2}2log2
x=\frac{\log{\ln{\frac{11}{5}}}}{2\log{2}}x=2log2
Answer= −0.171
Total weight of the 8 backpacks = 8 x 14 = 112 pounds
Total weight of the 12 backpacks = 12 x 9 = 108 pounds
Total weight of all the 20 backpacks = 220 pounds
Mean weight of the 20 backpacks = 220 ÷ 20 = 11 pounds
----------------------------------------------------------------------------------------
Answer: The mean weight of the 20 backpacks is 11 pounds
----------------------------------------------------------------------------------------