Answer:
<h2>you had $9.28 prior to making the withdrawal</h2>
<h2>-$20.51= × - $29.79</h2><h2>× =$9.28</h2>
Step-by-step explanation:
<h2>i hope this help you</h2>
Answer:
B
Step-by-step explanation:
<em>Let
be the radius of one sphere.</em>
- Volume of sphere is

Since radius is r, the height of the cylinder will be 
Also, the cylinder has the same radius as the sphere: 
- Volume of Cylinder is

Plugging in the values we get: 
<u>Ratio of volume of 1 sphere to volume of cylinder is</u>:

The ratio is 1:3
Answer choice B is right.
Answer:
V = 34,13*π cubic units
Step-by-step explanation: See Annex
We find the common points of the two curves, solving the system of equations:
y² = 2*x x = 2*y ⇒ y = x/2
(x/2)² = 2*x
x²/4 = 2*x
x = 2*4 x = 8 and y = 8/2 y = 4
Then point P ( 8 ; 4 )
The other point Q is Q ( 0; 0)
From these two points, we get the integration limits for dy ( 0 , 4 )are the integration limits.
Now with the help of geogebra we have: In the annex segment ABCD is dy then
V = π *∫₀⁴ (R² - r² ) *dy = π *∫₀⁴ (2*y)² - (y²/2)² dy = π * ∫₀⁴ [(4y²) - y⁴/4 ] dy
V = π * [(4/3)y³ - (1/20)y⁵] |₀⁴
V = π * [ (4/3)*4³ - 0 - 1/20)*1024 + 0 )
V = π * [256/3 - 51,20]
V = 34,13*π cubic units
Answer:
) See annex
b) See annex
x = 0,5 ft
y = 2 ft and
V = 2 ft³
Step-by-step explanation: See annex
c) V = y*y*x
d-1) y = 3 - 2x
d-2) V = (3-2x)* ( 3-2x)* x ⇒ V = (3-2x)²*x
V(x) =( 9 + 4x² - 12x )*x ⇒ V(x) = 9x + 4x³ - 12x²
Taking derivatives
V¨(x) = 9 + 12x² - 24x
V¨(x) = 0 ⇒ 12x² -24x +9 = 0 ⇒ 4x² - 8x + 3 = 0
Solving for x (second degree equation)
x =[ -b ± √b²- 4ac ] / 2a
we get x₁ = 1,5 and x₂ = 0,5
We look at y = 3 - 2x and see that the value x₂ is the only valid root
then
x = 0,5 ft
y = 2 ft and
V = 0,5*2*2
V = 2 ft³
Well i have always gone by pemdas which is() exponits mulyiply or divide which ever comes first add subtract which ever comes first also